LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R A m[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 2 Cho hàm số y=
x
3
− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 3 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
Câu 4 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 5 Biết
5
R
1
dx 2x − 1 = ln T Giá trị của T là:
Câu 6 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√
ba3
A. m
2− 3
4m2− 3
m2− 12
m2− 12
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − 2y − 2 = 0 B (P) : x + y + 2z = 0 C (P) : x − y + 2z = 0 D (P) : x − y − 2z = 0.
Câu 8 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′
; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1
V2
A. V1
V2 = 1
V1
V2 = 1
V1
V2 = 1
2.
Câu 9 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 10 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Câu 11 Thể tích khối lập phương có cạnh 3a là:
Trang 2Câu 12 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(5; 5; 0) B M(−2; −6; 4) C M(2; −6; 4) D M(−2; 6; −4).
Câu 13 Cho hàm số y= f (x) có đạo hàm f′(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 14 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 3
5 −
6
5 + 6
5−
27
5 + 27
5 i.
Câu 15 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : y − z + 2 = 0 B (P) : y + z − 1 = 0 C (P) : x − 2z + 5 = 0 D (P) : x − 2y + 1 = 0.
Câu 16 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; 3; −4) B.→−n = (2; −3; 4) C.→−n = (−2; 3; 4) D.→−n = (−2; 3; 1)
Câu 17 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
Câu 18 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 19 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 20 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 21 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x3− 3x − 5 B y= x4− 3x2+ 2 C y= x−3
x−1 D y= x2− 4x+ 1
Câu 22 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= − sin x + x2+ C B. R f(x)dx= − sin x + x 2
2 + C
2 + C
Câu 23 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 24 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 25 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 26 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 27 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Trang 3Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
1
3.
Câu 29 NếuR−14 f(x)= 2 và R4
−1g(x)= 3 thì R4
−1[ f (x)+ g(x)] bằng
Câu 30 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+ z2
= 2?
Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= xπ−1 B y′ = πxπ C y′ = π1xπ−1 D y′ = πxπ−1
Câu 32 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Câu 33 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 34 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′
là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1
2 ⇔ x= 9
2 ⇔ z= 9
2 −
9
2i|z+ 4i − 5|
A. √1
2
√
4
√
1
2.
Câu 35 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√5 B max T = 2√10 C max T = 3√2 D max T = 2√5
Câu 36 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng
5π
Câu 37 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là
Câu 38 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 39 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 40 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Đường tròn B Hai đường thẳng C Một đường thẳng D Parabol.
Câu 41 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
Trang 4Câu 42 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x − 1)2+ (y − 4)2 = 125 B (x − 5)2+ (y − 4)2 = 125
C (x+ 1)2+ (y − 2)2 = 125 D x= 2
Câu 43 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a
√ 30
3a
√ 6
a
√ 15
Câu 44 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
17
πa2√ 15
πa2√ 17
πa2√ 17
Câu 45 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 46 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
125π√3
400π√3
500π√3
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
Câu 50 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
2
5a√2
5a√3
5a√3
Trang 5HẾT