LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào? A y = −x4 + 1 B y = x4 + 2x2[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 1 B y= x4+ 2x2+ 1 C y= x4+ 1 D y= −x4+ 2x2+ 1
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1
3.
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. D (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2= 3
Câu 3 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
2
1
6.
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450
A C(3; 7; 4) B C(−3; 1; 1) C C(1; 5; 3) D C(5; 9; 5).
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 6 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −3 B f (−1)= −1 C f (−1)= −5 D f (−1)= 3
Câu 7 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A −2 < m < 2 B 0 < m < 2 C −2 ≤ m ≤ 2 D m= 2
Câu 8 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
Câu 9 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(1; −2; 3); R= 3 B I(1; 2; −3); R= 3 C I(−1; 2; −3); R = 3 D I(1; 2; 3); R = 3.
Câu 10 Số phức z= 2 − 3i có phần ảo là
Câu 11 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A m > −4 B −4 < m < −3 C −4 ≤ m < −3 D −4 < m ≤ −3.
Câu 12 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′
BCbằng 2a2Tính thể tích V của khối lăng trụ ABC.A′
B′C′
A V = 3a3 B V = a3
√ 3
3 .
Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A x − 2y − 2z − 4= 0 B x+ 2y + 2z + 8 = 0
C 3x − 4y+ 6z + 34 = 0 D −x+ 2y + 2z + 4 = 0
Câu 14 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x4− 2x2+ 2 B y= x3− 3x2+ 2 C y= −x3+ 3x2+ 2 D y= −x4+ 2x2+ 2
Trang 2Câu 15 Với a là số thực dương tùy ý, log5(5a) bằng
Câu 16 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; −6; 4) B M(5; 5; 0) C M(2; −6; 4) D M(−2; 6; −4).
Câu 17 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 18 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 1
x B F′(x)= 2
x 2 C F′(x)= −1
x 2 D F′(x)= ln x
Câu 19 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2 = y−1
2 = z−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
Câu 20 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
Câu 21 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 22 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 23 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 24 Cho hàm số y= ax +b
cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm
số đã cho và trục hoành là
Câu 25 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 26 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 27 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 29 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
A. 5
1
1
4
3.
Câu 30 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Trang 3Câu 31 Cho hàm số y = f (x) có đạo hàm f′
(x)= (x − 2)2
(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 32 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln(6a2) B ln3
2
3.
Câu 33 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một Elip B Một đường tròn C Một Parabol D Một đường thẳng Câu 35 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 1 B max |z|= √2 C max |z|= 3 D max |z|= 2
Câu 36 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 37 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 38 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
A w= 1 + √27 hoặcw= 1 − √27 B w= −√27 − i hoặcw= −√27+ i
C w= 1 + √27i hoặcw= 1 − √27i D w= √27 − i hoặcw= √27+ i
Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x − 5)2+ (y − 4)2 = 125 B x= 2
C (x − 1)2+ (y − 4)2 = 125 D (x+ 1)2+ (y − 2)2= 125
Câu 40 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một Elip B Một Parabol C Một đường tròn D Một đường thẳng Câu 41 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Đường tròn B Parabol C Một đường thẳng D Hai đường thẳng.
Câu 42 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600
Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Câu 45 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 29
25
23
27
4 .
Trang 4Câu 46 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 1 thì ax > ay ⇔ x> y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 0 thì ax = ay ⇔ x= y
Câu 47 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 48 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 49 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ n + 2
C log22250= 2mn+ 2n + 3
Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc
tơ 2→−u + 3−→v
A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 14; 15)
C 2→−u + 3−→v = (1; 13; 16) D 2→−u + 3−→v = (3; 14; 16)
Trang 5HẾT