Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của
M trên mặt phẳng (Oxy)
A A(1; 0; 3) B A(1; 2; 0) C A(0; 2; 3) D A(0; 0; 3).
Câu 2 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −1 B f (−1)= −5 C f (−1)= −3 D f (−1)= 3
Câu 3 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
√ 5
a
√ 15
a
√ 5
6 .
Câu 4 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√
ba3
A. m
4m2− 3
m2− 3
m2− 12
Câu 5 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)
Câu 6 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 6
3x − 1
ln 2
(3x − 1) ln 2. C y
3x − 1
ln 2
(3x − 1) ln 2.
Câu 7 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và không có tiệm cận đứng.
B Không có tiệm cận ngang và có một tiệm cận đứng.
C Có một tiệm cận ngang và một tiệm cận đứng .
D Không có tiệm cận.
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − y + 2z = 0 B (P) : x − 2y − 2 = 0 C (P) : x − y − 2z = 0 D (P) : x + y + 2z = 0.
Câu 9 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và
−→
nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −
√ 3
2 Góc giữa hai mặt phẳng (P) và (Q) bằng.
Câu 10 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 11 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Trang 2Câu 12 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 13 Tính đạo hàm của hàm số y= 5x
A y′ = 5x
Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng
MN có phương trình tham số là
Câu 15 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 16 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′
BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3
a3
√ 2
a3
a3
√ 2
Câu 17 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng
A −1
1
3
3
2.
Câu 18 Căn bậc hai của -4 trong tập số phức là.
Câu 19 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu
a − bbằng
Câu 20 Gọi z1, z2là hai nghiệm phức của phương trình 2(1+i)z2−4(2−i)z−5−3i= 0 TổngT = |z1|2+|z2|2
bằng bao nhiêu?
A T = 13
√ 13
2 .
Câu 21 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2+ (5 − 2i)z − 9 + 7i = 0 B z2− (1+ 4i)z + 9 − 7i = 0
C z2− (5 − 2i)z+ 9 − 7i = 0 D z2+ (1 + 4i)z − 9 + 7i = 0
Câu 22 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A −3
3
7
7
4.
Câu 23 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của
số phức w= z2+ 2z bằng bao nhiêu?
A |w|= 5 B |w|= √13 C |w|= 5√13 D |w|= √37
Câu 24 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 4 − i và −4+ i B 5 − 2i và −5+ 2i C 4+ i và −4 + i D 4 − i và 2+ 3i
Câu 25 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 26 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Trang 3Câu 27 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3).
Câu 28 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16π
16
16
15.
Câu 29 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln2
Câu 30 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 31 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 32 Cho hàm số y= f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 2)2 B P=
|z|2− 42 C P = (|z| − 4)2 D P =
|z|2− 22
Câu 36 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 37 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 1
2 < |z| < 3
3
2 ≤ |z| ≤ 2. C |z| <
1
2. D |z| > 2.
Câu 38 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 39 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 40 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
1
√
√ 2
Trang 4Câu 41 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 5
2 < |z| < 4 B. 1
2 < |z| < 2 C 3 < |z| < 5 D. 3
2 < |z| < 3
Câu 42 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 2
√ 3
2 .
Câu 43 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 44 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
3.
Câu 45 Số phức z= 2 − 3i có phần ảo là
Câu 46 Cho lăng trụ đứng ABC.A′B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′BC)bằng
600Biết diện tích của tam giác∆A′
BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′
A V = 3a3 B V = a3√
√ 3
3 .
Câu 47 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : y + z − 1 = 0 B (P) : x − 2z + 5 = 0 C (P) : y − z + 2 = 0 D (P) : x − 2y + 1 = 0.
Câu 48 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; 3] B [−3; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3].
Câu 49 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= −x3+ 3x2+ 2 B y= x4− 2x2+ 2 C y= x3− 3x2+ 2 D y= −x4+ 2x2+ 2
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; −6; 4) B M(−2; 6; −4) C M(5; 5; 0) D M(2; −6; 4).
HẾT