1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (609)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 118,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 2

1

1

6.

Câu 2 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 3 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′

D′

A. a

3

a3

a3

a3

4.

Câu 4 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A 3√3(m2) B. 3

√ 3

√ 3

2)

Câu 5 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

3.

Câu 6 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

1

4;+∞)

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; −1; 2).

Câu 8 Cho hình hộp chữ nhật ABCD.A

B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′

A. a

2

a

√ 3

√ 3

2 .

Câu 9 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2−5x+m) > log3(x−2)

có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 10. R 6x5dxbằng

6x

6+ C D 30x4+ C

Câu 11 Đường thẳng (∆) : x −1

−1 không đi qua điểm nào dưới đây?

A (−1; −3; 1) B A(−1; 2; 0) C (3; −1; −1) D (1; −2; 0).

Câu 12 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 13 Cho hàm số y= f (x) có bảng biến thiên như sau :

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Trang 2

Câu 14 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

A. 1

−1

Câu 15 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(3

4;

1

3

4;

1

3

4;

3

3

4;

1

2; 2).

Câu 16 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 17 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2



x2+ y2

≤ log3x+ log2



x2+ y2+ 24x

?

Câu 18 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2 = (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n1 = (−1; 1; 1)

Câu 19 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 20 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 21 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?

Câu 22 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−2; −4; −6) B (−1; −2; −3) C (2; 4; 6) D (1; 2; 3).

Câu 23 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 24 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x

3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 25 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = − 1

x ln 3

Câu 26 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 27 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn

z1

+

z2

= 2?

Câu 28 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16π

16

16

15.

Trang 3

Câu 29 NếuR2

0 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 30 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 31 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 1

3.

Câu 32 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= − 1

′ = ln3

′ = 1

x.

Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; −2; −3) B (1; −2; 3) C (1; 2; −3) D (−1; 2; 3).

Câu 34 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Một đường thẳng B Parabol C Hai đường thẳng D Đường tròn.

Câu 35 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

2 .

Câu 36 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một Elip B Một Parabol C Một đường thẳng D Một đường tròn.

Câu 37 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

A x − y+ 8 = 0 B x − y+ 4 = 0 C x+ y − 8 = 0 D x+ y − 5 = 0

Câu 38 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 39 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√2 B max T = 2√10 C max T = 3√5 D max T = 2√5

Câu 40 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là

Câu 41 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu

Câu 42 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 43 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 15

πa2√ 17

πa2√ 17

Câu 44 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Trang 4

Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (2; 14; 14) B 2→−u + 3−→v = (1; 14; 15)

C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 13; 16)

Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 47 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

5ln 2+ 6π

1

4ln 2+ 3π

2 . D ln 2+ 6π

5 .

Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:

A.R (2x+ 1)2dx= (2x+ 1)3

2 + C

Câu 49 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

1

√ 5

√ 15

5 .

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:35

🧩 Sản phẩm bạn có thể quan tâm