LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = 2x + 2017∣∣∣∣∣x∣∣∣∣∣ + 1 (1) Mệnh đề nào dưới đây là đúng? A Đồ th[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
B Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
D Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
Câu 2 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 3 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A −1
2
1
Câu 4 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 32
5 .
Câu 5 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
4.
Câu 6 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2+ 1
1
1
1
2.
Câu 7 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 8 Tìm giá trị cực đại yCDcủa hàm số y= x3− 12x+ 20
Câu 9 Biết F(x)= x2
là một nguyên hàm của hàm số f (x) trên R Giá trị của
3 R
1 [1+ f (x)]dx bằng
A. 26
32
3 .
Câu 10 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.
Câu 11 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Trang 2Câu 12 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
A x= −2 + 4ty = −6tz = 1 + 2t B x= 4 + 2ty = −3tz = 2 + t
C x= 2 + 2ty = −3tz = −1 + t D x= −2 + 2ty = −3tz = 1 + t
Câu 13 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
15
√ 3
1
√ 3
2 .
Câu 14 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là
Câu 15 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 16 Đường thẳng (∆) : x −1
2 = y+ 2
−1 không đi qua điểm nào dưới đây?
A A(−1; 2; 0) B (3; −1; −1) C (1; −2; 0) D (−1; −3; 1).
Câu 17 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 1
x 2 D F′(x)= −1
x 2
Câu 18 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 19 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 20 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 21 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x−3
x−1 B y= x4− 3x2+ 2 C y= x3− 3x − 5 D y= x2− 4x+ 1
Câu 22 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x)dx bằng
Câu 23 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 24 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 25 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ−1 B y′ = 1
πxπ−1 C y′ = xπ−1 D y′ = πxπ
Câu 26 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x2− 4x+ 1 B y= x4− 3x2+ 2 C y= x3− 3x − 5 D y= x −3
x −1.
Câu 27 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 28 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16
16π
16
16π
9 .
Trang 3Câu 29 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 2
′ (x)= lnx D F′(x)= −1
x2
Câu 30 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= πxπ−1 B y′ = π1xπ−1 C y′ = πxπ D y′ = xπ−1
Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; 2; 3) C (1; −2; 3) D (−1; −2; −3).
Câu 33 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 34 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 35 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 36 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 37 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Đường tròn B Một đường thẳng C Parabol D Hai đường thẳng.
Câu 38 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 3 B max |z|= √2 C max |z|= 1 D max |z|= 2
Câu 39 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A x − y+ 8 = 0 B x − y+ 4 = 0 C x+ y − 8 = 0 D x+ y − 5 = 0
Câu 41 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 42 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
A w= √27 − i hoặcw= √27+ i B w= −√27 − i hoặcw= −√27+ i
C w= 1 + √27 hoặcw= 1 − √27 D w= 1 + √27i hoặcw= 1 − √27i
Trang 4Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
5
1
√ 15
√ 15
5 .
Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a < 1 thì ax > ay ⇔ x< y B Nếu a > 1 thì ax > ay ⇔ x> y
C Nếu a > 0 thì ax = ay ⇔ x= y D Nếu a > 0 thì ax > ay ⇔ x< y
Câu 46 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
12.
Câu 47 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. a
√
15
3a√6
3a√30
3a√6
Câu 49 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng
A. πa2√
15
πa2√ 17
πa2√ 17
πa2√ 17
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
B.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
D.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Trang 5HẾT