1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (746)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 124,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có 3 điểm cực trị A y = 2x4 + 4x2 + 1 B y = x4 + 2x2 −[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có 3 điểm cực trị:

A y= 2x4+ 4x2+ 1 B y= x4+ 2x2− 1 C y= −x4− 2x2− 1 D y= x4− 2x2− 1

Câu 2 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A loga(xy)= logax.logay B logaxn= log

a

1 n

x, (x > 0, n , 0)

C loga1= a và logaa= 0 D logaxcó nghĩa với ∀x ∈ R

Câu 3 Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA= BC = a, S A = a và vuông góc với mặt phẳng đáy Tính côsin góc giữa hai mặt phẳng (SAC) và (SBC) bằng?

A.

2

√ 3

1

√ 2

3 .

Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3

3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R

Câu 5 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:

Câu 6 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục bé

bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được

A. 2a

2b

4a2b

4a2b

2a2b

3√2π.

Câu 7 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a Thể tích khối chóp S ABC là

A. 2a

3√

3

a3√3

a3√3

3√

3

Câu 8 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC

Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)

A. 2

√ 10

√ 5

√ 3

4 .

Câu 9 Cho hàm số có bảng biến thiên:

Khẳng định nào sau đây là đúng?

A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại

C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại

Câu 10 Cho lăng trụ đứng ABC.A

B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′

BC)bằng

600Biết diện tích của tam giác∆A′BCbằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′

A V = 2a3

√ 3

3

Trang 2

Câu 11 Trong các số phức z thỏa mãn

z − i =

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= −6

5 + 27

5−

27

5 + 6

5 −

6

5i.

Câu 12 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A C3

Câu 13 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi

có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20

Câu 14 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

Câu 15 Với a là số thực dương tùy ý, log5(5a) bằng

Câu 16 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A −4 < m ≤ −3 B −4 ≤ m < −3 C m > −4 D −4 < m < −3.

Câu 17 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n4 = (1; 1; −1) B.→−n1 = (−1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n3 = (1; 1; 1)

Câu 18 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

Câu 19 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

Câu 20 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6).

Câu 21 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2

−1 = z +3

−2 Điểm nào dưới đây thuộc d?

A P(1; 2; 3) B N(2; 1; 2) C M(2; −1; −2) D Q(1; 2; −3).

Câu 22 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 23 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′ = ln 3

x

Câu 24 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 25 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 26 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 1

7

1

Trang 3

Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

5

24.

Câu 28 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 29 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 30 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 31 Phần ảo của số phức z= 2 − 3i là

Câu 32 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

Câu 33 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:

A y′= 1πxπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = πxπ−1

Câu 34 Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?

x

y′ y

2

+∞

−∞

2

A y= 2x − 1

2x+ 1

x −1 .

Câu 35 Cho hàm số y= 2x − 3

−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?

A Hàm số đồng biến trên khoảng (2;+∞) B Hàm số đồng biến trên tập xác định của nó.

C Hàm số đồng biến trên khoảng (−2; 2) D Hàm số đồng biến trên khoảng (−2;+∞)

Câu 36 Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam

giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt ”?

Câu 37 Cho hàm số y= x3− 3x2− 9x − 5 Trong các khẳng định sau, khẳng định nào sai?

A Hàm số có hai điểm cực trị.

B Hàm số có một điểm cực đại và một điểm cực tiểu.

C Giá trị cực tiểu của hàm số là 3.

D Giá trị cực đại của hàm số là 0.

Trang 4

Câu 38 Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?

A y= −x2+ 3x + 5 B y= x −3

5 − x. C y= x4− 2x2+ 1 D y= −x3− 2x+ 3

Câu 39 Cho hình lăng trụ đứng ABC.A′B′C′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a Tính thể tích V của khối lăng trụ ABC.A′

B′C′

Câu 40 Cho hàm số y= f (x) liên tục trên R và lim

x→ +∞y= 3 Trong các khẳng định sau, khẳng định nào luôn đúng?

A Đường thẳng y= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)

B Đường thẳng x= 3 là một tiệm cận đứng của đồ thị hàm số y = f (x)

C Đường thẳng y= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)

D Đường thẳng x= 3 là một tiệm cận ngang của đồ thị hàm số y = f (x)

Câu 41 Cho hàm số y= f (x) có bảng biến thiên như sau:

x

y′

y

−2

−∞

+∞

−2

Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Câu 42 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC

A V = 1

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Câu 44 Tính đạo hàm của hàm số y= log4

x2− 1

A y′ = √ 1

x2− 1 ln 4

(x2− 1)log4e. C y

2(x2− 1) ln 4. D y

(x2− 1) ln 4.

Câu 45 Cho hình lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′

B′C′

Câu 46 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 47 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây

Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 5 = 0 B −2x − y+ 4z − 8 = 0

C 2x+ y − 4z + 7 = 0 D 2x+ y − 4z + 1 = 0

Trang 5

Câu 49 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2= 2 B (x − 1)2+ (y − 2)2+ (z − 4)2 = 1

C (x − 1)2+ (y + 2)2+ (z − 4)2= 1 D (x − 1)2+ (y − 2)2+ (z − 4)2 = 3

HẾT

Ngày đăng: 10/04/2023, 15:21

🧩 Sản phẩm bạn có thể quan tâm