1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (696)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 122,78 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P =[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

m2− 12

m2− 3

4m2− 3

Câu 2 Biết

5

R

1

dx 2x − 1 = ln T Giá trị của T là:

Câu 3 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′

D′

A. a

3

a3

a3

a3

3.

Câu 4 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(a

b)= ln a

C ln(ab2)= ln a + 2 ln b D ln(ab2)= ln a + (ln b)2

Câu 5 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

1

4;+∞) D (1;+∞)

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x + y + 2z = 0 B (P) : x − y − 2z = 0 C (P) : x − y + 2z = 0 D (P) : x − 2y − 2 = 0.

Câu 7 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 8 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 2

3x − 1

ln 2

(3x − 1) ln 2. C y

3x − 1

ln 2

(3x − 1) ln 2.

Câu 9 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

4x

−1

2(x

1

2(2x)

1

2 D 3x(x2+ 1)

1

2

Câu 10 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.

a

→ c

= √3 D.→−b ⊥→−a

Câu 11 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

A C3

Câu 12 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A y= x3− 3x2+ 2 B y= x4− 2x2+ 2 C y= −x4+ 2x2+ 2 D y= −x3+ 3x2+ 2

Trang 2

Câu 13 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 14 Số phức z= 2 − 3i có phần ảo là

Câu 15 Cho hàm số y= f (x) có đạo hàm f′(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 16 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của

3

R

1

[1+ f (x)]dx bằng

32

3 .

Câu 17 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

Câu 18 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

Câu 19 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 20 Có bao nhiêu giá trị nguyên của tham số m để hàm số y= −x4+6x2+mx có ba điểm cự trị?

Câu 21 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?

Câu 22 Trên tập hợp số phức, xét phương trình z2 − 2(m+ 1)z + m2 = 0(m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn |z1|+ |z2|= 2?

Câu 23 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= −2

3

Câu 24 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 25 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn

log3x2+ y2+ x + log2



x2+ y2

≤ log3x+ log2

x2+ y2+ 24x

?

Câu 26 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 27 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 28 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

′(x)= lnx D F′(x)= −1

x2

Trang 3

Câu 29 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 30 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 31 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 32 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

√ 2

2 a

√ 2

6 a

√ 2

4 a

3

Câu 33 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

A. 1

Câu 34 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

A.

Câu 35 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 36 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác nhọn B Tam giác OAB là tam giác vuông.

C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác cân.

Câu 37 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 38 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một đường thẳng B Một Elip C Một Parabol D Một đường tròn.

Câu 39 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 40 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√2 B max T = 3√5 C max T = 2√5 D max T = 2√10

Câu 41 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′

là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √2

1

1

4

13.

Trang 4

Câu 42 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện

−2 − 3i

3 − 2i z+ 1

= 1

A max |z|= 2 B max |z|= 1 C max |z|= √2 D max |z|= 3

Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

15

1

√ 15

√ 5

3 .

Câu 44 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′

B′C′

A 4a3√

3

Câu 45 Cho tứ diện DABC, tam giác ABC vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a√3

5a√3

5a√2

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Câu 47 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 5 = 0 B −2x − y+ 4z − 8 = 0

C 2x+ y − 4z + 1 = 0 D 2x+ y − 4z + 7 = 0

Câu 48 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

(x2− 1) ln 4. B y

(x2− 1)log4e. C y

x2− 1 ln 4

2(x2− 1) ln 4.

Câu 49 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:22

🧩 Sản phẩm bạn có thể quan tâm