LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x
A. 1
1
2
Câu 2 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 3 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 4 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
4.
Câu 5 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (0;1
1
Câu 6 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [7
4; 2]S[22;+∞) B (7
4;+∞)
C (7
4; 2]S[22;+∞) D [22;+∞)
Câu 7 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(2x − 1) + C B. R f(2x − 1)dx = 2F(x) − 1 + C
C.R f(2x − 1)dx= 1
Câu 8 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
√
√ 5
a√15
Câu 9 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y= x2 và đường thẳng y= mx với m , 0 Hỏi có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 10 Cho hàm số f (x) Biết f (0)= 4 và f′
(x)= 2 sin2
x+ 1, ∀x ∈ R, khi đó
π 4 R
0
f(x) bằng
A. π2+ 16π − 4
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
C x − 2y − 2z − 4= 0 D −x+ 2y + 2z + 4 = 0
Câu 12 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= −6
5 + 27
5 −
27
5 + 6
5 − 6
5i.
Trang 2Câu 13 Cho hàm số y= f (x) có đạo hàm f′
(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 14 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x B y′ = 2023x
ln 2023 C y′ = x.2023x−1 D y′ = 2023x
Câu 15 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
5 .
Câu 16 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
A C3
Câu 17 Xét các số phức z thỏa mãnz2− 3 − 4i= 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng
Câu 18 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= 2
x 2 B F′(x)= 1
x C F′(x)= −1
x 2 D F′(x)= ln x
Câu 19 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n3 = (1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n4 = (1; 1; −1)
Câu 20 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên) Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 21 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2 = y−1
2 = z−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
3
Câu 22 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 23 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?
A.R f(x)dx= sin x + x2
2 + C
C.R f(x)dx= − sin x + x2+ C D.R f(x)dx= sin x + x2+ C
Câu 24 NếuR2
0 f(x)dx= 4 thì R02h1
2f(x) − 2idx bằng
Câu 25 Phần ảo của số phức z= 2 − 3i là
Câu 26 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 27 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn
z1
+ z2
= 2?
Câu 28 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Trang 3Câu 29 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
A. 1
1
5
4
3.
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 31 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 32 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
4 a
√ 2
2 a
√ 2
6 a
3 D. √2a3
Câu 33 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
Câu 34 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 35 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= √33 B |z|= 5√2 C |z|= √10 D |z|= 50
Câu 36 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√2 B max T = 2√5 C max T = 3√5 D max T = 2√10
Câu 37 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x − 1)2+ (y − 4)2 = 125 B x= 2
C (x+ 1)2+ (y − 2)2 = 125 D (x − 5)2+ (y − 4)2= 125
Câu 38 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol.
Câu 39 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 4 B max |z|= 7 C max |z|= 6 D max |z|= 3
Câu 40 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường tròn Tính bán kính r của đường tròn đó
Câu 41 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z
w là
số thuần ảo thì mệnh đề nào sau đây đúng?
A Tam giác OAB là tam giác nhọn B Tam giác OAB là tam giác cân.
C Tam giác OAB là tam giác đều D Tam giác OAB là tam giác vuông.
Câu 42 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Hai đường thẳng B Parabol C Đường tròn D Một đường thẳng.
Trang 4Câu 43 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
A. 1
1
1
1
4.
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 45 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P = 2a +b+c. B P = 26abc C P= 2a +2b+3c. D P= 2abc
Câu 46 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R (2x+ 1)2dx= (2x+ 1)3
2 + C
Câu 47 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
A D = (−∞; −1] ∪ (1; +∞)
B D = (−∞; 0)
D D = (1; +∞)
Câu 48 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 49 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Câu 50 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
32.
Trang 5HẾT