Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) x2 + y2 + z2 − 4z −[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 6; 0) B (0; 2; 0) C (0; −2; 0) D (−2; 0; 0).
Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m ≥ e−2 B m > 2e C m > 2 D m > e2
Câu 4 Bất đẳng thức nào sau đây là đúng?
C (√3 − 1)e < (√3 − 1)π D 3π < 2π
Câu 5 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 1
m+ 2). B I = ln(
2m+ 2
m+ 2 ). C I = ln(
m+ 2 2m+ 2). D I = ln(
m+ 2
m+ 1).
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0).
Câu 7 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
A y= 3x+ 1
Câu 8 Tính I =R1
0
3
√ 7x+ 1dx
A I = 45
7 .
Câu 9 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A P(4 ; −1 ; 3) B N(1 ; 1 ; 7) C Q(4 ; 4 ; 2) D M(0 ; 0 ; 2).
Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x+ 1)2+ (y + 4)2+ (z − 2)2= √40 B (x − 1)2+ (y − 4)2+ (z + 2)2 = 40
C (x − 1)2+ (y − 4)2+ (z + 2)2= 10 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40
Câu 11 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 12 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Trang 2Câu 13 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 14 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 15 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2và trục hoành quanh trục Ox
A V = 7π
3 .
Câu 16 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
Câu 17 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 18 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là 3 và phần ảo là 2i B Phần thực là3 và phần ảo là 2.
C Phần thực là −3 và phần ảo là−2 D Phần thực là−3 và phần ảo là −2i.
Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng
A z2+ 2z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z+ z + 1
Câu 21 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B 0 và 1 C Chỉ có số 1 D Không có số nào Câu 22 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực dương D Mô-đun của số phức z là số thực không âm Câu 23 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 24 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009i D (1+ i)2018 = 21009
Câu 25 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 11
29
29
11
13.
Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 27 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Trang 3Câu 28 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 29 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A M(2; −1; −2) B P(1; 2; 3) C Q(1; 2; −3) D N(2; 1; 2).
Câu 30 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 1
11
Câu 31 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 32 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 5
24
√
Câu 33 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′= 1
xln3.
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 35 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là một số thực không dương B Phần thực của z là số âm.
Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2. D |z| > 2.
Câu 37 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 5
2 < |z| < 4 B. 3
2 < |z| < 3 C. 1
2 < |z| < 2 D 3 < |z| < 5.
Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 39 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 40 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
1
√ 2
3 .
Trang 4Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
1
2.
Câu 42 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 2
√ 3
Câu 43 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; 6; −4) B M(−2; −6; 4) C M(5; 5; 0) D M(2; −6; 4).
Câu 45 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m > 1 B −1 ≤ m < 0 C −1 ≤ m ≤ 0 D m < −1.
Câu 46 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
√ 3
√ 15
1
2.
Câu 47. R 6x5dxbằng
6x
Câu 48 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A (1; −2; 0) B (3; −1; −1) C A(−1; 2; 0) D (−1; −3; 1).
Câu 49 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 50 Tìm nguyên hàm của hàm số f (x)= cos 3x
HẾT