Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m ≥ e−2 B m > 2e C m > 2 D m > e2
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
C x= 5 + 2ty = 5 + tz = 2 − 4t D x= 5 + ty = 5 + 2tz = 2
Câu 3 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
3 < b−√3 C ea > eb D a
√
2> b√2
Câu 4 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 5 Cho lăng trụ đều ABC.A′B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 6 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 7 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A 2π
√
√
l2− R2
Câu 8 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng
(S BD) theo a
A. a
√
2
a
√ 2
Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′
(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho nghịch biến trên khoảng (1; 4).
B Hàm số đã cho đồng biến trên khoảng (−∞; 3).
C Hàm số đã cho nghịch biến trên khoảng (3;+∞)
D Hàm số đã cho đồng biến trên khoảng (1; 4).
Câu 11 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 12 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5(x+ y2)?
Câu 13 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Trang 2Câu 14 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 16 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 17 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 18 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗
Hỏi đâu là phương án đúng?
Câu 19 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 20 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng
A z · z+ z + z + 1 B |z|2+ 2|z| + 1 C z+ z + 1 D z2+ 2z + 1
Câu 22 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= 21009i B (1+ i)2018 = −21009 C (1+ i)2018 = −21009i D (1+ i)2018 = 21009
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số phức.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực không âm.
Câu 24 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 25 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 26 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn
z1
+
z2
= 2?
Câu 27 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
2 + C
C.R f(x)= −sinx + x2
Câu 28 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương
trình là:
A.
x= 1 + 2t
y= −1 + t
z= −1 + 3t
x= 5 + t
y= 5 + 2t
z= 1 + 3t
x= 5 + 2t
y= 5 + 3t
z= −1 + t
x= 1 + 2t
y= −1 + 3t
z= −1 + t
Câu 29 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = 1πxπ−1
Trang 3Câu 30 Cho khối lăng trụ đứng ABC · A′
B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
2 a
√ 2
4 a
√ 2
6 a
3 D. √2a3
Câu 31 NếuR4
−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng
Câu 32 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng
Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4
!
4;
5 4
!
2;
9 4
!
Câu 36 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 37 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 38 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 39 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 3
2. C |w|min = 1 D |w|min = 2
Câu 40 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2 Tính giá trị biểu thức P=
z1 z2
+
z2 z1
A. 3
√
2
√
Trang 4Câu 43 Số phức z= 2 − 3i có phần ảo là.
Câu 44 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −
z
i= 0 Tính S = 2a + 3b
Câu 45 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 8
1
209
1
210.
Câu 46 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
30
Câu 47 Biết
3 R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2 [ f (x)+ g(x)]dx bằng
Câu 48 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của
3 R
1 [1+ f (x)]dx bằng
32
Câu 49 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
3.
Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (2; 3; −4) C.→−n = (−2; 3; 1) D.→−n = (−2; 3; 4)
HẾT