Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 2 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0).
Câu 3 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 2; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 6; 0).
Câu 4 Cho số thực dươngm Tính I =
m R 0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 1
m+ 2). B I = ln(
m+ 2
m+ 1). C I = ln(
2m+ 2
m+ 2 ). D I = ln(
m+ 2 2m+ 2).
Câu 5 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
√
2 > b√2 C. √5
a< √5
b D a−√3 < b−√3
Câu 6 Cho lăng trụ đều ABC.A′B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 8 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 3
B |→−u |= 9 C |→−u |= 1 D |→−u |= √3
Câu 9 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
−2 = z+ 2
1 và d2 :
x −4
1 = y+ 1
3 = z+ 2
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách
từ điểm M(1; 1; 1) đến (P) bằng
1
√
2
3√10.
Câu 10 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −3 cos 3x B f (x)= −cos 3x
3 . C f (x)= 3 cos 3x D f (x)= cos 3x
Câu 11 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 12 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Trang 2Câu 13 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 14 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 15 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A N(1 ; 1 ; 7) B M(0 ; 0 ; 2) C P(4 ; −1 ; 3) D Q(4 ; 4 ; 2).
Câu 16 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 17 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 18 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2 z1
là
Câu 19 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 1 B |z1+ z2|= √13 C |z1+ z2|= 5 D |z1+ z2|= √5
Câu 20 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 21 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z.
Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 23 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 24 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A m ≥ 1 hoặc m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C −1 ≤ m ≤ 0 D 0 ≤ m ≤ 1.
Câu 25 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Chỉ có số 1 B 0 và 1 C Không có số nào D C.Truehỉ có số 0.
Câu 26 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (1; −2; 3) C (1; 2; −3) D (−1; 2; 3).
Trang 3Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 28 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln3
Câu 29 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 30 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 31 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 7
1
1
4.
Câu 32 Trong không gian Oxyz, cho đường thẳng d : x −1
2 = y −2
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A P(1; 2; 3) B Q(1; 2; −3) C M(2; −1; −2) D N(2; 1; 2).
Câu 33 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′
(x)= 1
′ (x)= 2
(x)= −1
x2
Câu 34 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 2 B |w|min= 3
2. C |w|min = 1
2. D |w|min = 1
Câu 35 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 1
Câu 36 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
A a2+ b2+ c2+ ab + bc + ca B a2+ b2+ c2− ab − bc − ca
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2. D |z| > 2.
Câu 39 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 2
√ 5
√ 6
2 .
Câu 40 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 3
√ 2
2 .
Trang 4Câu 41 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4
!
2;
9 4
!
4;
5 4
!
Câu 43 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Câu 44 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 45 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.→−b ⊥→−a B.→−b ⊥→−c C.
−
→ c
−
→ a
= √2
Câu 46 Đường thẳng (∆) : x −1
2 = y+ 2
−1 không đi qua điểm nào dưới đây?
A (−1; −3; 1) B (3; −1; −1) C (1; −2; 0) D A(−1; 2; 0).
Câu 47 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (−2; 3; 4) B.→−n = (−2; 3; 1) C.→−n = (2; −3; 4) D.→−n = (2; 3; −4)
Câu 48 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
Câu 49 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 20 B (x − 4)2+ (y + 8)2 = 2√5
C (x+ 4)2+ (y − 8)2 = 2√5 D (x+ 4)2+ (y − 8)2 = 20
Câu 50 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 209
1
1
8
105.
HẾT