1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (855)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhi
Định dạng
Số trang 4
Dung lượng 124,72 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Đồ thị hàm số y = ( √ 3 − 1) x có dạng nào trong các hình H1, H2, H3, H4[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 2 Cho lăng trụ đều ABC.A′B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 3 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

l2− R2 D πRl.

Câu 4 Hàm số nào sau đây đồng biến trên R?

Câu 5 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 6 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A ac < 0 B ad > 0 C bc > 0 D ab < 0

Câu 7 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A. √a

√ 3a

2a

√ 5a

3 .

Câu 8 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

x −1 .

Câu 9 Cho hàm số f (x) liên tục trên R và

2

R

0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Câu 10 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120

Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Câu 11 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2

−1 = x −1

A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là

A (8

3; −

2

3;

7

2

3; −

4

3;

5

10

2 ; −

4

3;

5

3). D (2 ; −3 ; 1).

Câu 12 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

55.

Câu 13 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Trang 2

Câu 14 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 15 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng

Câu 17 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 18 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 19 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z là số thuần ảo B z= 1

Câu 20 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A −29

11

11

29

13.

Câu 21 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 22 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Chỉ có số 1 B Không có số nào C 0 và 1 D C.Truehỉ có số 0.

Câu 24 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A |z2|= |z|2 B z · z = a2− b2 C z − z= 2a D z+ z = 2bi

Câu 25 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009i B (1+ i)2018 = −21009i C (1+ i)2018 = 21009 D (1+ i)2018 = −21009

Câu 26 Cho hàm số y= f (x) có đạo hàm f′(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 27 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 28 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2 bằng

Câu 29 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Trang 3

Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:

A y′= xπ−1 B y′ = πxπ−1 C y′ = πxπ D y′ = 1πxπ−1

Câu 32 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A. 2

3

√ 3

√ 2

√ 2a

Câu 33 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 34 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B. 1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. D |z| <

1

2.

Câu 36 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 6

√ 2

√ 5

5 .

Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2

85

√ 97

Câu 40 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P= (|z| − 2)2 B P= (|z| − 4)2 C P =

|z|2− 42 D P =

|z|2− 22

Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 43 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(x

2+ 1)

1

2 B 3x(x2+ 1)

1

2(2x)

1

4x

−1

4

Trang 4

Câu 44 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 15π

Câu 45 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 46 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng

Câu 47 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

2.

Câu 48 Tính đạo hàm của hàm số y= 2023x

A y′ = 2023x

ln x B y′ = 2023x

ln 2023 D y′ = x.2023x−1

Câu 49 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

A. 1

−1

Câu 50 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

HẾT

Ngày đăng: 10/04/2023, 08:47