Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P) z[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 2 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5+ 1 − 1
5 ln 5 −
1
ln 5.
C y= x
5 ln 5− 1+ 1
5 ln 5 + 1
Câu 3 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2 B m > 2e C m > e2 D m ≥ e−2
Câu 5 Hàm số nào sau đây không có cực trị?
Câu 6 Bất đẳng thức nào sau đây là đúng?
A (√3 − 1)e < (√3 − 1)π B 3−e > 2−e
C (√3+ 1)π > (√3+ 1)e D 3π < 2π
Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (2; −1; 2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; −2).
Câu 8 Cho lăng trụ đều ABC.A′
B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 9 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
3
a3
3
Câu 10 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 11 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là
A x5− sin x+ C B x5+ sin x + C C 5x5+ sin x + C D 5x5− sin x+ C
Câu 12 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
d2 : x −4
3 = z+ 2
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng
A. √1
√
3
√
5.
Trang 2Câu 13 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
Câu 14 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 15 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 16 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= 3 cos 3x B f (x)= cos 3x
3 . C f (x)= −cos 3x
3 . D f (x)= −3 cos 3x
Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là−3 và phần ảo là −2i B Phần thực là3 và phần ảo là 2.
C Phần thực là −3 và phần ảo là−2 D Phần thực là 3 và phần ảo là 2i.
Câu 18 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 19 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 6√3 B |w|= √85 C |w|= √48 D |w|= 4√5
Câu 20 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 21 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 22 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 23 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 24 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 25 Với mọi số phức z, ta có |z+ 1|2bằng
A z · z+ z + z + 1 B |z|2+ 2|z| + 1 C z+ z + 1 D z2+ 2z + 1
Câu 26 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x) = −cos2x B F(x) = −1
2cos2x. C F(x)= −cos2x D F(x)= sin2x
Câu 27 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số
A f (x)= −2023cos(2023x) B f (x)= − 1
2023cos(2023x).
C f (x)= 2023cos(2023x) D f (x)= cos(2023x)
Câu 28 Tính tích phân I = R2
1 xexdx
Trang 3Câu 29 Cho a3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
Câu 30 Họ nguyên hàm của hàm số f (x)= cosx + sinx là
A F(x)= −sinx + cosx + C B F(x)= sinx − cosx + C
C F(x)= sinx + cosx + C D F(x)= −sinx − cosx + C
Câu 31 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
A.R f(x)dx= 1
2
√
2x+ 1 + C.
Câu 32 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 33 Tích phânR1
0 e−x dx bằng
1
1
e − 1.
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P= (|z| − 4)2
|z|2− 42 D P = (|z| − 2)2
Câu 35 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 5
2 < |z| < 7
2. B 2 < |z| <
5
3
2 < |z| < 2 D. 1
2 < |z| < 3
2.
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 38 Cho số phức z thỏa mãn1 −
√ 5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 1
2 < |z| < 2 B. 3
2 < |z| < 3 C 3 < |z| < 5 D. 5
2 < |z| < 4
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Trang 4Câu 42 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P =
√
3
√ 2
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3
C (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 1
Câu 44 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình đúng với mọi x ∈ [ 1; 3].
B Bất phương trình vô nghiệm.
C Bất phương trình đúng với mọi x ∈ (4;+∞)
D Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
Câu 45 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 46 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
2(x2− 1) ln 4. B y
x2− 1 ln 4
(x2− 1)log4e. D y
(x2− 1) ln 4.
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 400π
√
3
250π√3
125π√3
500π√3
Câu 49 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
√ 5
1
√ 15
5 .
Trang 5HẾT