Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ c[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(−2; 3; 1) B M′(2; 3; 1) C M′(2; −3; −1) D M′(−2; −3; −1)
Câu 3 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
A. 13
Câu 4 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A log 1
a
x> log1
a
y B ln x > ln y C log x > log y D logax> logay
Câu 5 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 6 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
A V = 10π
Câu 7 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
5a
a
√
2a
√
√ 3a
2 .
Câu 8 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = 3+ 2x
x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
A −4 < m < 1 B 1 < m , 4 C m < 3
Câu 9 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A I(−1; −2; 3) B K(3; 0; 15) C H(−2; −1; 3) D J(−3; 2; 7).
Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2= 10 B (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40
C (x − 1)2+ (y − 4)2+ (z + 2)2= 40 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40
Câu 11 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 12 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
220.
Trang 2Câu 13 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
A A3
10
Câu 14 Tính đạo hàm của hàm số y= 5x
A y′ = 5x
′ = x.5x−1
Câu 15 Nếu
6
R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1
( f (x)+ g(x)) bằng
Câu 16 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2
+
z2
2
= 5
Câu 17 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 18 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|=
√
34
√ 34
Câu 20 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B m ≥ 1 hoặc m ≤ 0 C −1 ≤ m ≤ 0 D m ≥ 0 hoặc m ≤ −1 Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z+ z + 1 C z2+ 2z + 1 D z · z+ z + z + 1
Câu 22 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 23 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 24 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B Không có số nào C 0 và 1 D Chỉ có số 1.
Câu 25 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z= 1
Câu 26 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 27 Tích phânR1
0 e−x dx bằng
A. e −1
1
1
Câu 28 Tính tích phân I = R12xexdx
Câu 29 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là
A −2x + y − z + 1 = 0 B 2x + y − z − 4 = 0 C −2x + y − z + 4 = 0 D −2x + y − z − 4 = 0.
Trang 3Câu 30 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x+ y − z + 1 = 0 B x+ y − z − 3 = 0 C 6x + y − z − 6 = 0 D x − y + z + 6 = 0.
Câu 31 Biết
1
R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
A ab= 5
Câu 32 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
2; 1).
Câu 33 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A x+ ln2x+ C B x+ 1
2ln
2ln
2x+ lnx + C D ln2x+ lnx + C
Câu 34 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 2 B |w|min= 1
2. C |w|min = 3
2. D |w|min = 1
Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;+∞
!
4
!
4;
5 4
!
Câu 37 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z
2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là
Câu 39 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B. 1
2 < |z| < 3
2. C |z| <
1
3
2 ≤ |z| ≤ 2.
Câu 40 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 4 B |z|= 1
Câu 41 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B |z|= 1
C z là số thuần ảo D z là một số thực không dương.
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3√ 5
a3√ 15
a3√ 15
Trang 4Câu 44 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a√30
a
√ 15
3a
√ 6
Câu 45 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRl + 2πR2 B St p = πRh + πR2 C St p = 2πRl + 2πR2 D St p = πRl + πR2
Câu 46 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 47 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
32π
33π
5 .
Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2
nhỏ nhất Tính tổng a+ b + c
Câu 49 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
Câu 50 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 250π
√
3
500π√3
400π√3
125π√3
Trang 5HẾT