1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (620)

5 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x− √ 2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Không có tiệm cận ngang và có một tiệm cận đứng.

B Có một tiệm cận ngang và một tiệm cận đứng .

C Có một tiệm cận ngang và không có tiệm cận đứng.

D Không có tiệm cận.

Câu 2 Cho hình lập phương ABCD.A

B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′

D′

A. a

3

a3

a3

a3

9.

Câu 3 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A.

2.a2

π√2.a2

π√3.a2

√ 3.a2

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 5 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 6 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 7 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

15

a√5

a√5

√ 15

Câu 8 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. 2π.a

3

π.a3

4π√2.a3

π√2.a3

Câu 9 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F

(x)= −1

(x)= 1

(x)= 2

(x)= lnx

Câu 10 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 11 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 4

1

5

1

4.

Câu 12 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Trang 2

Câu 13 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2

z Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2 bằng

Câu 14 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 15 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 16 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 17 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A 0 ≤ m ≤ 1 B −1 ≤ m ≤ 0 C m ≥ 0 hoặc m ≤ −1 D m ≥ 1 hoặc m ≤ 0 Câu 18 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z. C z là số thuần ảo. D z= z

Câu 19 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng

A z2+ 2z + 1 B z · z+ z + z + 1 C z+ z + 1 D |z|2+ 2|z| + 1

Câu 21 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 22 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 23 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −22016 B −21008+ 1 C −21008 D 21008

Câu 24 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực.

Câu 25 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 26 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x) = ex +1. B F(x) = ex C F(x)= e2x D F(x)= ex+ 1

Câu 27 Hàm số f (x) thoả mãn f

(x)= xx là:

A x2+ x+1

x+ 1 + C. B (x − 1)x+ C. C x2 x+ C. D (x+ 1)x+ C.

Câu 28 Họ nguyên hàm của hàm số f (x)= cosx + sinx là

A F(x) = sinx + cosx + C B F(x)= −sinx − cosx + C

C F(x) = −sinx + cosx + C D F(x)= sinx − cosx + C

Câu 29 Tính tích phân I = R12xexdx

Trang 3

Câu 30 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

B. Rb

a f(2x+ 3) = F(2x + 3)

b

a

C.Ra

b f(x)= F(b) − F(a)

D.Rb

a k · f(x)= k[F(b) − F(a)]

Câu 31 Biết

1

R

0

3x − 1

x2+ 6x + 9 dx = 3ln

a

b −

5

6, trong đó a, b nguyên dương và

a

b là phân số tối giản Hãy tính ab

Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z + 4 = 0 B 3x − 2y+ z − 4 = 0

C 3x+ 2y + z − 4 = 0 D 3x − 2y+ z − 12 = 0

Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (−1; −1; −3) B (3; 3; −1) C (3; 1; 1) D (1; 1; 3).

Câu 34 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 35 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

2.

Câu 36 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 3

√ 6

√ 2

√ 5

√ 2

3 .

Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 38 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A 2 < |z| < 5

1

2 < |z| < 3

5

2 < |z| < 7

3

2 < |z| < 2

Câu 40 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

2 ≤ |z| ≤ 2. B |z| <

1

1

2 < |z| < 3

2.

Câu 42 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

Trang 4

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3.

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 .

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3

R

2

|x2− 2x|dx

C.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx −

3

R

2

(x2− 2x)dx

Câu 44 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a√3

5a√2

5a√2

Câu 45 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 46 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

30

a√15

3a√6

3a√6

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 1 = 0 B −2x − y+ 4z − 8 = 0

C 2x+ y − 4z + 7 = 0 D 2x+ y − 4z + 5 = 0

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:42