Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A 5[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
2> b√2 D a−√3 < b−√3
Câu 2 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A m ≥ 0 B −1 < m < 7
2. C m ∈ (0; 2). D m ∈ (−1; 2).
Câu 3 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
A S = (−∞; ln3) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; 2)
Câu 4 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; −17; 21) B C(6; 21; 21) C C(8;21
2 ; 19). D C(20; 15; 7).
Câu 6 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= −1
2. B minR
R
y= 1
y= 0
Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; −5; 0) B (0; 0; 5) C (0; 5; 0) D (0; 1; 0).
Câu 8 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC =
√ 3a2b
2
q
b2− √3a2
C VS.ABC = a2
√ 3b2− a2
√ 3ab2
12 .
Câu 9 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?
A (3, 3; 3, 5)· B (3, 5; 3, 7)· C (3, 7; 3, 9)· D (3, 1; 3, 3)·.
Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
55.
Câu 11 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 7π
3 .
Câu 12 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
Trang 2A −2
3(2x+ 1)−
4
1
3 ln(2x+ 1)
C (2x+ 1)−
1
3(2x+ 1)−
4
3
Câu 13 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 14 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 15 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 16 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 17 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 18 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 19 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 21 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √48 B |w|= 4√5 C |w|= 6√3 D |w|= √85
Câu 22 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức
z1+ z2
z1
là
Câu 23 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 24 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 25 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 26 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2
−1 f′(x) bằng:
Câu 27 F(x) là một nguyên hàm của hàm số y= xex 2
Hàm số nào sau đây không phải là F(x)?
A F(x) = −1
2e
x 2
+ C B F(x) = 1
2e
x 2 + 2 C F(x)= 1
2(e
x 2 + 5) D F(x)= −1
2(2 − e
x 2 )
Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
A x − 2y+ 2z − 15 = 0 B x+ 2y + 2z + 15 = 0
Trang 3Câu 29 Cho a3x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
A (0;1
1
2; 1).
Câu 30 Tìm nguyên hàm của hàm số f (x)= √ 1
2x+ 1.
2x+ 1 + C.
2
√ 2x+ 1 + C
Câu 31 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =
1, tính tích phân I = R5
0 1+ f (x).
A I = 5
3.
Câu 32 Tích phân I = R02(2x − 1) có giá trị bằng:
Câu 33 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R34 f(x)= 4 Tích phân R03 f(x) bằng
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1
+ 1
z2
= 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
√ 2
1
√
2.
Câu 35 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Câu 36 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2.
Câu 37 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 4
√ 5
√ 6
√ 2
√ 2
3 .
Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 40 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A Phần thực của z là số âm B z là một số thực không dương.
Trang 4Câu 41 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Câu 42 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 2 B |z|= 1
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
5
a3√ 15
a3√ 15
a3√ 15
Câu 44 Tính đạo hàm của hàm số y= 5x +cos3x
A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = 5x +cos3xln 5.
C y′ = (1 + 3 sin 3x)5x +cos3xln 5. D y′ = (1 − 3 sin 3x)5x +cos3xln 5.
Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2
nhỏ nhất Tính tổng a+ b + c
Câu 46 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết
AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng
A. 5a
√
3
5a√2
5a√2
5a√3
Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A m > −2 B −4 ≤ m ≤ −1 C −3 ≤ m ≤ 0 D m < 0.
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a < 1 thì ax > ay ⇔ x< y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a > 1 thì ax > ay ⇔ x> y
Câu 49 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = √ 1
x2− 1 ln 4. B y
(x2− 1) ln 4. C y
(x2− 1)log4e. D y
2(x2− 1) ln 4.
Câu 50 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Trang 5HẾT