1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đê ôn thptqg 1 (713)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thptqg 1 (713)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 150,93 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1224d] Tìm tham số thực m để phương trình log2 3 x + log3 x + m = 0 có nghiệm A m > 1 4 B m < 1 4 C m ≤ 1[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 2. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 3. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 4. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 5. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 6 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

dx = x + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z 1

xdx= ln |x| + C, C là hằng số

Câu 7. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 8. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 9. Tứ diện đều thuộc loại

Câu 10. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0;+∞)

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (0; 2).

Câu 11. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 12. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 2

a3√ 3

3√ 3

Trang 2

Câu 13. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 14. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 15. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 16. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

13 .

Câu 17. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 18. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R B. D = (−∞; 1) C. D = R \ {1} D. D = (1; +∞)

Câu 19. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

√ 2

Câu 20. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

a3√ 3

2a3√ 3

4a3√ 3

3 .

Câu 21. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

Câu 22. Khối lập phương thuộc loại

Câu 23 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx B.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

C.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 24. Tính lim n −1

n2+ 2

Trang 3

Câu 25. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 26 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 27. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 28. [1] Đạo hàm của làm số y = log x là

A y0 = ln 10

0 = 1

xln 10. C y

0 = 1

1

10 ln x.

Câu 29. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = (1, 01)3

(1, 01)3− 1 triệu. B m = 100.(1, 01)3

3 triệu.

C m = 100.1, 03

(1, 12)3− 1 triệu.

Câu 30. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 31. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 32. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 33. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 34. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

3.

Câu 35. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = [2; 1] B. D = R \ {1; 2} C. D = R D. D = (−2; 1)

Câu 36. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2

− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 37. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Trang 4

Câu 38. Khối đa diện đều loại {5; 3} có số cạnh

Câu 39. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 40. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Cả hai câu trên sai C Cả hai câu trên đúng D Chỉ có (I) đúng.

Câu 41. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 42. Khối đa diện đều loại {3; 4} có số cạnh

Câu 43. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A −1

1

1

Câu 44. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

2 và 3 C 2 và 2

2 và 3

Câu 45. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 46. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A. 3

Câu 47. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B Cả ba câu trên đều sai.

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) trên khoảng (a; b)

Câu 48. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 49. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 50. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Trang 5

Câu 51. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 2

Câu 52. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 53. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = 1 − 2n

5n+ n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Câu 54. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 55. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3√3

4a3√3

8a3√3

3 .

Câu 57. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= 10 C f0(0)= 1

ln 10. D f

0 (0)= ln 10

Câu 58. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 7

5

Câu 59. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 60. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 61. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 62. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

sin n

1

n.

Câu 63. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 64. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 2

11 − 3

3 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 9

11 − 19

Câu 65. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên (n − 1) lần B Tăng lên n lần C Giảm đi n lần D Không thay đổi.

Trang 6

Câu 66. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A − 1

1

e.

Câu 67. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị lớn nhất trên K D f (x) có giá trị nhỏ nhất trên K.

Câu 68. Khối đa diện đều loại {3; 5} có số cạnh

Câu 69. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 70. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

2e

π

√ 3

2 e

π

6

Câu 71 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 72. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

2x3ln 10. C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 2 ln 2x

x3ln 10 .

Câu 73. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 74. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 75. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 76. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 77. Khối đa diện đều loại {4; 3} có số cạnh

Câu 78. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√2

3√

3√ 3

6 .

Trang 7

Câu 80. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 81. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 82. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A −2

2

Câu 83. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 84. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ ab

2

a2+ b2 D. √ 1

a2+ b2

Câu 85. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

Câu 86. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 87. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

!

3

!

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 88. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.

Câu 89. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 90. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

24 .

Câu 91. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= loga2 C log2a= 1

loga2. D log2a= − loga2

Câu 92. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

9.

Trang 8

Câu 93. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Hai hình chóp tam giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Câu 94. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 95. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 96. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 97. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 98. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 99. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 100. Khối đa diện đều loại {3; 4} có số mặt

Câu 101. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 102. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = (0; +∞) C. D = R \ {0} D. D = R

Câu 103. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 104. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln x C y0 = 1

0 = 2x ln 2

Câu 105. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 106. [4] Xét hàm số f (t) = 9t

9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S

Trang 9

Câu 107. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

2a

a

a

3.

Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 109. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 110. Tính lim 5

n+ 3

Câu 111. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3√6

a3√3

a3√6

12 .

Câu 112. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 2

a3√ 6

a3√ 6

18 .

Câu 113. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 114. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 115. Xác định phần ảo của số phức z= (√2+ 3i)2

A −6

√ 2

Câu 116. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 117. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 118 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng.

Câu 119. Khối đa diện đều loại {5; 3} có số mặt

Câu 120. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a√57

2a√57

19 .

Trang 10

Câu 121. Tính lim

x→1

x3− 1

x −1

Câu 122. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 123. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 124. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 125. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 126. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 127. Bát diện đều thuộc loại

Câu 128. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

√ 57

2a√57

19 .

Câu 129. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h.

Câu 130. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

√ 2

HẾT

Ngày đăng: 09/04/2023, 21:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN