Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối lập phương có bao nhiêu đỉnh, cạnh mặt? A 6 đỉnh, 12 cạnh, 8 mặt B 8 đỉnh, 12 cạnh, 6 mặt C 8 đỉnh, 1[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 2. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 3. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 4. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
5
a3√ 15
a3
a3√ 15
25 .
Câu 5. Dãy số nào sau đây có giới hạn khác 0?
A. 1
n+ 1
sin n
1
√
n.
Câu 6. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 7. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
2 .
Câu 8. Vận tốc chuyển động của máy bay là v(t)= 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
1
e2
Câu 10. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.
Câu 11. [2] Đạo hàm của hàm số y = x ln x là
A y0 = x + ln x B y0 = 1 + ln x C y0 = 1 − ln x D y0 = ln x − 1
Câu 12. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 13. Khối lập phương thuộc loại
Câu 14. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Trang 2Câu 15. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
2a√57
a√57
19 .
Câu 16. Thể tích của khối lập phương có cạnh bằng a
√ 2
3√ 2
√ 2
Câu 17. Bát diện đều thuộc loại
Câu 18. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai câu trên đúng.
Câu 19. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
2 .
Câu 20. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 21. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 22. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1
2.
Câu 23. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
ln 2
2 .
Câu 24 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαβ = (aα
)β B aαbα = (ab)α C. a
α
aβ = aα D aα+β = aα.aβ
Câu 25. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 26. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 27. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 28. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 4 ln 2x
2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Trang 3Câu 29 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 30. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Đường phân giác góc phần tư thứ nhất.
C Trục thực.
D Trục ảo.
Câu 31. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√
Câu 32. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 34 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số B.
Z
f(x)dx
!0
= f (x)
C.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C D.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
Câu 35. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
a3
3√ 3
2 .
Câu 36. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng −∞;1
3
!
C Hàm số nghịch biến trên khoảng 1
3; 1
! D Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 37. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 38. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là 4.
C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là −4.
Câu 39. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A. 5
√
13
√
√
√ 13
Câu 40. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Trang 4Câu 41 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B.
Z
f(x)dx
!0
= f (x)
C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 42. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1
Câu 43. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 44. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 6
6 . B V = πa3
√ 3
3 . C V = πa3
√ 3
6 . D V = πa3
√ 3
2 .
Câu 45. Biểu thức nào sau đây không có nghĩa
Câu 46. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 47. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 48. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±3 B m= ±√2 C m= ±√3 D m= ±1
Câu 49. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
2e
π
√ 2
2 e
π
4
Câu 51. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
5
Câu 52. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 53. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 54. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 1 C M = e, m = 1
e. D M = e, m = 0
Trang 5Câu 55. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = n2− 4n C un = −2
3
!n D un = n3− 3n
n+ 1 .
Câu 56. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B lim
x→af(x)= f (a)
x→a + f(x)= lim
x→a − f(x)= a
Câu 57. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
Câu 58. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2
− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 59. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.
Câu 60. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 61. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 62. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a
√ 2
2a
a
3.
Câu 63. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 64. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 65. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 1 C T = 4 + 2
e. D T = e + 3
Câu 66. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 67. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 68. Tính lim
x→3
x2− 9
x −3
Câu 69. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Trang 6Câu 70. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3
√ 6
a3
√ 3
24 .
Câu 71. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 72. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3√3
a3√6
a3√3
2 .
Câu 73. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3 .
Câu 74. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 9 lần D Tăng gấp 18 lần.
Câu 76. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 77. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 78. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 79. Khối đa diện đều loại {3; 4} có số cạnh
Câu 80. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 81. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
e.
Câu 82. Tính lim
x→1
x3− 1
x −1
Câu 83. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
2a
8a
5a
9 .
Trang 7Câu 84. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 85. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 86. Khối đa diện đều loại {4; 3} có số mặt
Câu 87. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C Cả ba câu trên đều sai.
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 88. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
2.
Câu 89. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 90. [1] Giá trị của biểu thức 9log3 12bằng
Câu 91. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 92. Tìm giới hạn lim2n+ 1
n+ 1
Câu 93. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A a3
√
3√ 6
2a3√ 6
4a3√ 6
3 .
Câu 94. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 95. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Bốn tứ diện đều và một hình chóp tam giác đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 96 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 8(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 97. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tứ giác.
Câu 98. Cho hàm số y= x3+ 3x2
Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 99. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 100. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 101. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 102. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√
√ 3
3 .
Câu 103. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a√6
3 .
Câu 104. Tính lim 2n
2− 1 3n6+ n4
Câu 105. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√
√ 3
3 .
Trang 9Câu 106 Hình nào trong các hình sau đây không là khối đa diện?
Câu 107. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 6
a3√ 2
6 .
Câu 108. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
3
4.
Câu 109. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 70, 128 triệu đồng B 3, 5 triệu đồng C 50, 7 triệu đồng D 20, 128 triệu đồng.
Câu 110. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 111. Khối đa diện đều loại {3; 4} có số mặt
Câu 112. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 113. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 114. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3
a3√ 3
12 .
Câu 115. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√ 5
a3√ 5
a3√ 3
12 .
Câu 116. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 117. Khối đa diện đều loại {3; 5} có số mặt
Câu 118. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 119. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
e.
Câu 120. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Trang 10Câu 121. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 122. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
e
!n
3
!n
3
!n
Câu 123. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).
Câu 124. Cho I =
Z 3 0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 125. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 126. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 127. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là 4 B Phần thực là 4, phần ảo là 1.
C Phần thực là 4, phần ảo là −1 D Phần thực là −1, phần ảo là −4.
Câu 128. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√ 3
a3√ 3
4 .
Câu 129. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 130. [1] Tính lim
x→3
x −3
x+ 3 bằng?
HẾT