1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (808)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 125,05 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A ad > 0 B ac < 0 C bc > 0 D ab < 0

Câu 2 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A π√l2− R2 B 2π√l2− R2 C πRl D 2πRl.

Câu 3 Tính I =R1

0

3

√ 7x+ 1dx

A I = 45

8 .

Câu 4 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= 1

R

R

y= −1

2.

Câu 5 Bất đẳng thức nào sau đây là đúng?

A (√3 − 1)e < (√3 − 1)π B (√3+ 1)π > (√3+ 1)e

Câu 6 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < π thì y > 1 − 4π2 B Nếu 0 < x < 1 thì y < −3.

C Nếux= 1 thì y = −3 D Nếux > 2 thìy < −15.

Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

Câu 9 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A 2(2x+ 1)−

1

3(2x+ 1)−

4

3

C (2x+ 1)−

1

3(2x+ 1)−

4

3

Câu 10 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 11 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Trang 2

Câu 12 Cho khối lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

′B′C′

A. a

2

a3

√ 2

a3

a3

6.

Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40 B (x − 1)2+ (y − 4)2+ (z + 2)2= 10

C (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 D (x − 1)2+ (y − 4)2+ (z + 2)2= 40

Câu 14 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; −1) B.→−n = (1; 3; −2) C.→−n = (1; −2; 3) D.→−n = (1; 2; 3)

Câu 16 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

A. a

a

√ 2

Câu 17 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 5 B |z1+ z2|= √13 C |z1+ z2|= √5 D |z1+ z2|= 1

Câu 18 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 5

34

√ 34

Câu 19 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z.

Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 21 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 22 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 23 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z − z = 2a B z · z = a2− b2 C |z2|= |z|2 D z+ z = 2bi

Câu 24 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 26 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A.

3

√ 2

2√3

3 a.

Trang 3

Câu 27 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 28 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6).

Câu 29 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 30 Cho hàm số y = f (x) có đạo hàm f′(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 31 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 32 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2= (1; −1; 1) B.→−n3 = (1; 1; 1) C.→−n4 = (1; 1; −1) D.→−n1 = (−1; 1; 1)

Câu 33 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln3

2

2)

Câu 34 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 36 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 38 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

Câu 39 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

5.

Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Trang 4

Câu 41 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax = 10

√ 2

√ 2

√ 6

√ 5

5 .

Câu 42 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 .

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2

Câu 43 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 44 Đường thẳng (∆) : x −1

2 = y+ 2

−1 không đi qua điểm nào dưới đây?

A (3; −1; −1) B (1; −2; 0) C A(−1; 2; 0) D (−1; −3; 1).

Câu 45. R 6x5dxbằng

6x

Câu 46 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 47 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 1

1

8

209

210.

Câu 48 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A −4 < m < −3 B −4 < m ≤ −3 C −4 ≤ m < −3 D m > −4.

Câu 49 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

2.

Câu 50 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A 3x − 4y+ 6z + 34 = 0 B −x+ 2y + 2z + 4 = 0

HẾT

Ngày đăng: 09/04/2023, 20:31