1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (702)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhi
Định dạng
Số trang 4
Dung lượng 125,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x4 + 3x2 + 2 B y = x3 − 6x2 +[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị?

Câu 2 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

x −1 .

Câu 3 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

Câu 4 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= 1

R

y= −1

2. D minR

y= −1

Câu 5 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?

A V = π

3 .

Câu 6 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a

Câu 7 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 8 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 9 Cho hàm số y = ax+ b

cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 10 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 1+ x

−2x+ 3

x+ 2 .

Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

A J(−3; 2; 7) B K(3; 0; 15) C H(−2; −1; 3) D I(−1; −2; 3).

Câu 12 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Trang 2

Câu 13 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (1; 4).

C Hàm số đã cho đồng biến trên khoảng (−∞; 3).

D Hàm số đã cho nghịch biến trên khoảng (3;+∞)

Câu 14 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

Câu 15 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A x5− sin x+ C B x5+ sin x + C C 5x5+ sin x + C D 5x5− sin x+ C

Câu 16 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 17 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 18 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 20 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B Chỉ có số 1 C Không có số nào D C.Truehỉ có số 0.

Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 34 C |z|=

√ 34

√ 34

Câu 22 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 23 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √5 B |z1+ z2|= 1 C |z1+ z2|= 5 D |z1+ z2|= √13

Câu 24 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 25 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗

Hỏi đâu là phương án đúng?

Câu 26 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 5 + 2t

y= 5 + 3t

z= −1 + t

Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là

Trang 3

Câu 28 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 29 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

√ 2

√ 3

2√3

3 a.

Câu 30 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 4

18

9

1

7.

Câu 31 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 33 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?

Câu 34 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B z là số thuần ảo.

Câu 35 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 36 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 37 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 5

2 < |z| < 4 B 3 < |z| < 5 C. 3

2 < |z| < 3 D. 1

2 < |z| < 2

Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 3

√ 6

√ 2

√ 5

√ 2

Câu 39 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 40 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 41 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

2

√ 3

Trang 4

Câu 42 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 43 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

5π.

Câu 44 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 45 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 46 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A m < −1 B −1 ≤ m ≤ 0 C −1 ≤ m < 0 D m > 1.

Câu 47 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (0; 3] B [−3; 3] C (−∞; −3] ∪ [3; +∞) D (−∞; 3].

Câu 48 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 49 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= −6

5 −

27

5 −

6

5 + 6

5 + 27

5 i.

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(5; 5; 0) B M(−2; −6; 4) C M(2; −6; 4) D M(−2; 6; −4).

HẾT

Ngày đăng: 09/04/2023, 20:24