Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i) A 0 B 13 C Không tồn tại D 9 Câu 2 Khi tăng độ dài tất c[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 2. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 18 lần B Tăng gấp 27 lần C Tăng gấp 9 lần D Tăng gấp 3 lần.
Câu 3. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 4. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều đúng B Cả hai đều sai C Chỉ có (II) đúng D Chỉ có (I) đúng.
Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
6
a3
√ 2
a3
√ 3
a3
√ 3
48 .
Câu 6. Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 7. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = 2√5 B |z|= √4
Câu 8. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 9. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
A. 1
1
Câu 10. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 11. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 12. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A.
"
−2
3;+∞
!
5
# C. " 2
5;+∞
!
3
#
Trang 2Câu 13. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
a3
3
Câu 14. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 15. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 ∨ m = 4 B m < 0 ∨ m > 4 C m ≤ 0 D m < 0.
Câu 16. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 3S h B V = 1
2S h. C V = 1
3S h. D V = S h
Câu 17. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
2x3ln 10. D y
0 = 1 − 2 log 2x
x3
Câu 18. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 19 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng.
Câu 20. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
√ 57
2a
√ 57
a
√ 57
17 .
Câu 21. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 2
Câu 22. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = 4 +2
e. B T = e + 1 C T = e + 3 D T = e + 2
e.
Câu 23. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 24. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 25. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√ 3
a3√ 3
2√ 2
Trang 3Câu 26. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 27. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 28. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 29. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2
!
2;+∞
!
Câu 30. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
4a3√ 3
2a3√ 3
5a3√ 3
3 .
Câu 31. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (I) đúng B Cả hai câu trên sai C Chỉ có (II) đúng D Cả hai câu trên đúng.
Câu 32. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√ 10
Câu 33. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 34. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
√ 3
a
2.
Câu 35. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 8, 16, 32 D 2, 4, 8.
Câu 36. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 37. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 38. Khối đa diện đều loại {4; 3} có số cạnh
Trang 4Câu 39. [1] Đạo hàm của làm số y = log x là
A y0 = 1
0 = ln 10
1
0 = 1
xln 10.
Câu 40. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 41. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2− 2; m= 1
C M = e−2+ 1; m = 1 D M = e−2+ 2; m = 1
Câu 42. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3
√ 6
a3
√ 3
a3
√ 3
4 .
Câu 43. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 44. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 45. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 46. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ tứ giác đều là hình lập phương.
D Hình lăng trụ đứng là hình lăng trụ đều.
Câu 47. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3
√ 3
a3
√ 3
8 .
Câu 48. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0; 2).
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)
Câu 49. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A a3
√
3√ 5
a3√ 6
a3√ 15
3 .
Câu 50. Khối đa diện đều loại {3; 3} có số cạnh
Câu 51. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 52. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Trang 5Câu 53. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
Câu 54. Tính lim
x→3
x2− 9
x −3
Câu 55. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
26 .
Câu 56. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
6 .
Câu 57. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 58. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
3
2.
Câu 59. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√ 6
√ 6
Câu 60. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 61. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 62. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 63. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x4− 2x+ 1. C y= x3− 3x. D y= x +
1
x.
Câu 64. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 65. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 4035
2017
2016
Câu 66. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 67. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị lớn nhất trên K D f (x) liên tục trên K.
Trang 6Câu 68. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Hai hình chóp tam giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 69. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 70. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
24 .
Câu 71. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.
Câu 72. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 73. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
3
!n
3
!n
e
!n
Câu 74. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 75. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 76. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Câu 77. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 78. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 3
2 . C V = πa3
√ 3
6 . D V = πa3
√ 6
6 .
Trang 7Câu 79. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 18
√
11 − 29
21 C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 80. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
2√e.
Câu 81. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 82. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 83 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 84 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B Cả ba đáp án trên.
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 85. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 86. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 87. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√
√ 17
17 .
Câu 88. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
3.
Câu 89. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Trang 8Câu 90. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 91. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
3
a√6
a√6
a√6
7 .
Câu 92. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
a
√ 57
2a
√ 57
√ 57
Câu 93. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
2
3
Câu 94. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
38
a√38
3a
3a√58
29 .
Câu 95. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 13
Câu 96. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 97. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Câu 98. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 99. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 100. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 101. Tìm m để hàm số y= x3
− 3mx2+ 3m2
có 2 điểm cực trị
Câu 102. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Trang 9Câu 103. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 104. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 105. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 106. Tính lim
x→ +∞
x −2
x+ 3
Câu 107. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 108. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là 1 B Phần thực là 4, phần ảo là −1.
C Phần thực là −1, phần ảo là −4 D Phần thực là −1, phần ảo là 4.
Câu 109. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 110. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 112. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 113. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
√
√ 6
2 .
Câu 114. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 115. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Trang 10Câu 116. [3] Cho hàm số f (x)= 4
4x+ 2 Tính tổng T = f
1
2017 + f 2
2017 + · · · + f 2016
2017
A T = 2016
Câu 117. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 118 Hình nào trong các hình sau đây không là khối đa diện?
Câu 119. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 120. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 121. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Giảm đi n lần C Tăng lên (n − 1) lần D Không thay đổi.
Câu 122. [4-1213d] Cho hai hàm số y= x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y= |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 123. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 124. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A f (x) có giới hạn hữu hạn khi x → a B lim
x→a + f(x)= lim
x→a − f(x)= +∞
C lim
x→a + f(x)= lim
x→a − f(x)= a
Câu 125. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 126. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 127. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√ 3
√ 3
Câu 128. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (1; +∞) C. D = R D. D = (−∞; 1)
Câu 129. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
loga2. C log2a= 1
log2a. D log2a= loga2