Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1224d] Tìm tham số thực m để phương trình log2 3 x + log3 x + m = 0 có nghiệm A m ≤ 1 4 B m ≥ 1 4 C m > 1[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 2. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 3. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A −1
1
1
2.
Câu 4. Khối lập phương thuộc loại
Câu 5. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = [2; 1] B. D = R C. D = (−2; 1) D. D = R \ {1; 2}
Câu 6. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 7. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 8. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Trục thực.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Trục ảo.
D Đường phân giác góc phần tư thứ nhất.
Câu 9. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 6
a3√ 6
a3√ 3
24 .
Câu 10. Tính lim n −1
n2+ 2
Câu 11. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 12. Khối đa diện đều loại {3; 5} có số mặt
Câu 13. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Trang 2Câu 14. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|.
Câu 15. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 16. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 17. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Hai hình chóp tam giác.
C Một hình chóp tứ giác và một hình chóp ngũ giác.
D Một hình chóp tam giác và một hình chóp tứ giác.
Câu 18. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
Câu 19. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A.
√
5.
Câu 20 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 21. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
3√ 3
a3
√ 2
a3
√ 3
12 .
Câu 22. Tính lim
x→2
x+ 2
x bằng?
Câu 23. Khẳng định nào sau đây đúng?
A Hình lăng trụ tứ giác đều là hình lập phương.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 24 Phát biểu nào sau đây là sai?
n = 0
C lim 1
nk = 0 với k > 1 D lim un= c (Với un = c là hằng số)
Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3√15
a3√5
3√ 6
Trang 3Câu 26. Tìm giới hạn lim2n+ 1
n+ 1
Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 28. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 29. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
Câu 30. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 31. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 32 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aαβ = (aα
)β C aα+β = aα.aβ
D aαbα = (ab)α
Câu 33. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 34. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
2a√57
a√57
√ 57
Câu 35. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = S h B V = 1
3S h.
Câu 36. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 37. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 38 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Nhị thập diện đều B Bát diện đều C Tứ diện đều D Thập nhị diện đều.
Câu 39. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 40. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 41. Khối đa diện đều loại {3; 4} có số mặt
Trang 4Câu 42. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±3 C m= ±√3 D m= ±1
Câu 43. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 44. [1] Biết log6 √a= 2 thì log6abằng
Câu 45. Tính lim 2n
2− 1 3n6+ n4
3.
Câu 46. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2
− 4M)2019
Câu 47. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√3
a3√3
3
Câu 48. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
A [0;+∞) B (−∞; 0] ∪ (1;+∞) C (−∞; −1) ∪ (1; +∞) D (1; +∞).
Câu 49. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 50. Tính lim
x→3
x2− 9
x −3
Câu 51. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2016
2017
4035
2018.
Câu 52. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 53. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.
Câu 54. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2 và 2
√
√
√
2 và 3 D 2 và 3.
Câu 55. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 56. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
√ 3
1
2.
Câu 57. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Trang 5Câu 58. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 59. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 60. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 61. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√ 6
Câu 62. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√ 2
Câu 63. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 64. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
√ 3
2 . D P= −1+ i
√ 3
Câu 65. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 66. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 67. [1] Đạo hàm của làm số y = log x là
0 = ln 10
0 = 1
0 = 1
xln 10.
Câu 68 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
Câu 69. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = n2+ n + 1
(n+ 1)2 C un = n2− 2
5n − 3n2 D un = 1 − 2n
5n+ n2
Câu 70. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 71. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Trang 6Câu 72. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 73. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A. 9
13
5
23
100.
Câu 74. Tính lim
x→ +∞
x −2
x+ 3
Câu 75. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 76. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38 C 2, 4, 8 D 6, 12, 24.
Câu 77. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 78. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A 2
√
√
√
√ 13
13 .
Câu 79. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 8a
2a
5a
a
9.
Câu 80. [1] Giá trị của biểu thức 9log3 12bằng
Câu 81. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
3
12.
Câu 82 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 83. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A 2a
√
√ 6
√
√ 6
Trang 7Câu 84. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3
√ 3
a3
√ 3
a3
√ 3
8 .
Câu 85. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 86. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 87. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
16 .
Câu 88. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 89. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3√ 6
a3√ 6
a3√ 6
36 .
Câu 90. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
a√3
3 .
Câu 91. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 92. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
6 . C V = πa3
√ 3
3 . D V = πa3
√ 6
6 .
Câu 93. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 94. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 95. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
√
3
a
a
Trang 8Câu 96. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
log2a. B log2a= loga2 C log2a= 1
loga2. D log2a= − loga2
Câu 97. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 98. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 99. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
Câu 100. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 101. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 102. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 103 Phát biểu nào sau đây là sai?
nk = 0
C lim1
Câu 104. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√7
11a2
a2√5
16 .
Câu 105. Tứ diện đều thuộc loại
Câu 106. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.
Câu 107. Khối đa diện đều loại {3; 5} có số cạnh
Câu 108. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞
f(x)
g(x) = a
Câu 109. Khối đa diện đều loại {3; 3} có số đỉnh
Trang 9Câu 110. Khối đa diện đều loại {5; 3} có số mặt
Câu 111. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B lim
x→af(x)= f (a)
C lim
x→a + f(x)= lim
Câu 112. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 113. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 114. Cho I =Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 115. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 20 mặt đều B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.
Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
Câu 117 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C.
Z
f(x)dx
!0
= f (x)
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 118. Tính lim 5
n+ 3
Câu 119. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m > −5
Câu 120. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Hai khối chóp tam giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 121 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C B.
Z
f(x)dx
!0
= f (x)
C.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số D.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
Trang 10Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
a3√ 3
a3√ 6
48 .
Câu 123. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 124. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (0; 1) B (−∞; 0) và (1; +∞) C (−∞; −1) và (0; +∞) D (−1; 0).
Câu 125. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
Câu 126. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 127. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 128. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
4a3√ 3
5a3√ 3
a3√ 3
2 .
Câu 129. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
a3√ 3
a3√ 3
3
Câu 130. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
2
a3
√ 3
3√
3√ 3
2 .
HẾT