1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (583)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 149,84 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A= a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

√ 6

2 .

Câu 2. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

3

!n

3

!n

e

!n

Câu 3. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến∆ Lấy A, B thuộc

∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 4. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

23

5

13

100.

Câu 5 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 6. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 7. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 8 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 9. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 10. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Trang 2

Câu 11. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 12. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 13. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 14. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 15. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

1

1

2.

Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

3√

3√ 3

a3√ 3

3 .

Câu 17. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 18. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 19. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 20. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

40

50.(3)10

20

50.(3)20

10

50.(3)40

20

50.(3)30

450

Câu 21. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 22. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 2; m = 1 B M = e−2+ 1; m = 1

C M = e2− 2; m = e−2+ 2 D M = e−2

− 2; m= 1

Câu 23. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trang 3

Trong hai câu trên

A Chỉ có (II) đúng B Cả hai câu trên sai C Chỉ có (I) đúng D Cả hai câu trên đúng.

Câu 24. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3

4a3

2a3√ 3

3 .

Câu 25. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 26. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 27. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 5

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 28. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 29 Phát biểu nào sau đây là sai?

A lim1

nk = 0

Câu 30. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

A m < 0 B m < 0 ∨ m > 4 C m < 0 ∨ m= 4 D m ≤ 0.

Câu 31. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

3.

Câu 32. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 33. Hàm số y= x + 1

x có giá trị cực đại là

Câu 34. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. 2a

a

a

a√2

3 .

Câu 35. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = 1

e, m = 0

Trang 4

Câu 36. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

Câu 37. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 38. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 39. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 40. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= loga2 C log2a= 1

loga2. D log2a= 1

log2a.

Câu 41. Khối đa diện đều loại {5; 3} có số cạnh

Câu 42. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 43. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 44. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Câu 45. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.

Câu 46. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 47. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

36 .

Câu 48. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 49. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 50. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 51. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

3

a3√3

6 .

Trang 5

Câu 52. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45 Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√ 15

a3√ 15

a3

3 .

Câu 53. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

Câu 54. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 55. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√6

a3√2

a3√6

6 .

Câu 56. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

3 .

Câu 57. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (3; 4; −4) B ~u= (2; 2; −1) C ~u= (1; 0; 2) D ~u= (2; 1; 6)

Câu 58. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

a

√ 38

3a

3a

√ 38

29 .

Câu 59. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

√ 57

a√57

19 .

Câu 60. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 9

11+ 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 18

11 − 29

21 .

Câu 61. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 6

a3√ 5

a3√ 15

3 .

Câu 62. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 63. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tam giác.

Trang 6

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 64. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.

Câu 65. Bát diện đều thuộc loại

Câu 66. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

Câu 67. Tính giới hạn lim2n+ 1

3n+ 2

2

3

2.

Câu 68. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Câu 69. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là 4, phần ảo là 1 B Phần thực là −1, phần ảo là −4.

C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là −1.

Câu 70. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

2S h. D V = 1

3S h.

Câu 71. Tính lim

x→ +∞

x −2

x+ 3

Câu 72. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 73. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

! C. " 5

2; 3

!

Câu 74. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 2x3ln 10. C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 2 ln 2x

x3ln 10 .

Câu 75. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 76. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A.

2 và 3 B 2 và 2

2 và 3 D 2 và 3.

Câu 77. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Trang 7

Câu 78 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 79. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 80. Tính lim 5

n+ 3

Câu 81. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 82. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 83. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 84. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A 2a

√ 6

√ 6

Câu 85. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 3

2a3√ 6

9 .

Câu 86. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 87. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 88. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D Cả ba câu trên đều sai.

Câu 89. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 23

1728

1079

1637

4913.

Câu 90. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là

√ 3

C Phần thực là 1 − √2, phần ảo là −

3 D Phần thực là √2 − 1, phần ảo là −

√ 3

Trang 8

Câu 91. Cho hàm số y= x3+ 3x2

Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 92. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 3ac

3b+ 3ac

3b+ 2ac

c+ 3 .

Câu 93. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 94. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 95. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

2.

Câu 96. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

1

1

8.

Câu 97. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

Câu 98. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 99. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

Câu 100. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 101. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 6

a3

√ 3

a3

√ 3

24 .

Câu 102. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

Trang 9

Câu 103. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 104. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

2x

C y = logπ

Câu 105. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 106. Tính lim

x→3

x2− 9

x −3

Câu 107. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= 1

ln 10. C f

0 (0)= ln 10 D f0(0)= 1

Câu 108. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 109. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 110 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 111. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 112. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 113. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là 3, phần ảo là 4 B Phần thực là −3, phần ảo là 4.

C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.

Câu 114. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 115. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

Câu 116. Khối đa diện đều loại {3; 5} có số cạnh

Câu 117. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Trang 10

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 118. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√2 B m= ±3 C m= ±√3 D m= ±1

Câu 119 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Cả ba đáp án trên.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 120. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 121. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 122 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim √1

Câu 123. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 124. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 125. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

2 D 3+ 4√2

Câu 126. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 127. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 128. Khối chóp ngũ giác có số cạnh là

Câu 129. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; −3; 3) B A0(−3; 3; 3) C A0(−3; −3; −3) D A0(−3; 3; 1)

Câu 130. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

17 .

HẾT

Ngày đăng: 08/04/2023, 00:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN