TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khối đa diện đều loại {3; 4} có số mặt A 10 B 6 C 8 D 12 C[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khối đa diện đều loại {3; 4} có số mặt
Câu 2. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 3. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
3 .
Câu 4. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 5. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 3a3√
3 C V = 6a3 D V = 3a3
√ 3
2 .
Câu 6. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 7. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±3 C m= ±√2 D m= ±1
Câu 8. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = (−2; 1) B. D = R C. D = R \ {1; 2} D. D = [2; 1]
Câu 9. Tính lim 2n
2− 1 3n6+ n4
3.
Câu 10. [2] Đạo hàm của hàm số y = x ln x là
A y0 = x + ln x B y0 = 1 + ln x C y0 = 1 − ln x D y0 = ln x − 1
Câu 11. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 12. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 13. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = n3− 3n
n+ 1 . C un = n2− 4n D un = −2
3
!n
Câu 14. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
Trang 2B Một hình chóp tam giác và một hình chóp tứ giác.
C Một hình chóp tứ giác và một hình chóp ngũ giác.
D Hai hình chóp tam giác.
Câu 15. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 1
3; 1
!
3
!
C Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 16. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
10
50.(3)40
40
50.(3)10
20
50.(3)30
20
50.(3)20
450
Câu 17. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 1
1
8
8
9.
Câu 18. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 19 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 20. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 21. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
loga2. C log2a= 1
log2a. D log2a= − loga2
Câu 22. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 23. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A −1
1
Câu 24. [1] Giá trị của biểu thức 9log3 12bằng
Câu 25. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
11a2
a2√5
a2√7
8 .
Trang 3Câu 26. Hàm số nào sau đây không có cực trị
A y = x −2
2x+ 1. B y= x4− 2x+ 1. C y= x +
1
x. D y= x3− 3x
Câu 27 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Nhị thập diện đều C Bát diện đều D Tứ diện đều.
Câu 28. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 29. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 30. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
2.
Câu 31. Tính lim
x→1
x3− 1
x −1
Câu 32. Tính lim 5
n+ 3
Câu 33. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 34. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 35. Khối đa diện đều loại {5; 3} có số cạnh
Câu 36. Khối đa diện đều loại {4; 3} có số cạnh
Câu 37. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 38. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 39. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
(1, 01)3− 1 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = 100.(1, 01)3
3 triệu.
Trang 4Câu 40. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 41. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 1 C M = e, m = 1
e. D M = e, m = 0
Câu 42. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 43. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
√
2 và 3 C 2 và 2
√
√
2 và 3
Câu 44. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = (0; +∞) C. D = R \ {1} D. D = R
Câu 45. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 46. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 47. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 48. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1 − i
√ 3
2 . C P= −1+ i
√ 3
2 . D P= 2
Câu 49. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 50. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên (n − 1) lần B Tăng lên n lần C Không thay đổi D Giảm đi n lần.
Câu 51. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a√3
a√3
√ 3
Trang 5Câu 52. Dãy số nào sau đây có giới hạn khác 0?
A. n+ 1
sin n
1
√
1
n.
Câu 53. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 2
a3√ 3
2√ 2
Câu 54. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 55. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 56. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 57. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. √ 1
a2+ b2
Câu 58. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
20√3
√
√ 3
Câu 59. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 60. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
3S h. D V = S h
Câu 61. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 62. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
2a3
√ 3
4a3
√ 3
5a3
√ 3
3 .
Câu 63. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3√
3
2a3
4a3
2a3√3
3 .
Câu 64. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3√ 2
2 .
Trang 6Câu 65. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 66. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 67. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 68 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 69. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 70. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3
√ 3
a3
√ 3
a3
√ 3
4 .
Câu 71. Khối chóp ngũ giác có số cạnh là
Câu 72. Khối lập phương thuộc loại
Câu 73. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 74. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 75. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 76. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
2 .
Câu 77. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối 20 mặt đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 78. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (2; 1; 6) B ~u= (3; 4; −4) C ~u= (1; 0; 2) D ~u= (2; 2; −1)
Trang 7Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3
Câu 80. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 81. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 82. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là
1
e2
Câu 84. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 85. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 86. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√5
a3√5
a3√3
12 .
Câu 87. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 88. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A -2
7
Câu 89. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
23
68.
Câu 90. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 91. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
4 .
Câu 92. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
2 .
Câu 93. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Trang 8Câu 94. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 95. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 96. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 97 Phát biểu nào sau đây là sai?
nk = 0 với k > 1
C lim √1
Câu 98. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Câu 99. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 100. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
3.
Câu 101. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 102. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 6
2a3√ 6
a3√ 3
4 .
Câu 103. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D Cả ba câu trên đều sai.
Câu 104. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 105. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 106. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 107. Thập nhị diện đều (12 mặt đều) thuộc loại
Trang 9Câu 108. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 109. Khối đa diện đều loại {3; 4} có số cạnh
Câu 110. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
C Phần thực là
√
2, phần ảo là 1 −
√
√
2 − 1, phần ảo là −
√ 3
Câu 111. Tính giới hạn lim2n+ 1
3n+ 2
1
2
3.
Câu 112. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 113. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 114. Tìm giới hạn lim2n+ 1
n+ 1
Câu 115. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 116. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 117. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 118. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 119 Mệnh đề nào sau đây sai?
A.
Z
f(x)dx
!0
= f (x)
B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 120. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
√
√ 57
a√57
17 .
Trang 10Câu 121. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y − 1)2+ (z − 3)2= 9
4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 122. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 123. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a√6
6 .
Câu 124. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
1
1
e2
Câu 125. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Không có câu nào
sai
Câu 126. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 127. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 128. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 129. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
2.
Câu 130. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
HẾT