Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Công thức nào sai? A ∫ ax = ax ln a +C B ∫ sin x = − cos x +C C ∫ cos x[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Công thức nào sai?
Câu 2 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 2
m+ 1). B I = ln(
2m+ 2
m+ 2 ). C I = ln(
m+ 1
m+ 2). D I = ln(
m+ 2 2m+ 2).
Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại
Câu 4 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 9 B |→−u |= 3
C |→−u |= 1 D |→−u |= √3
Câu 5 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 6 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (−2; 1; 2) B (−2; −1; 2) C (2; −1; −2) D (2; −1; 2).
Câu 7 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
x −1 .
Câu 8 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 9 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 10 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2− 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho nghịch biến trên khoảng (1; 4).
B Hàm số đã cho nghịch biến trên khoảng (3;+∞)
C Hàm số đã cho đồng biến trên khoảng (1; 4).
D Hàm số đã cho đồng biến trên khoảng (−∞; 3).
Câu 11 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x ≥ log5(x+ y2)?
Câu 12 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng
A. a
3
2a3
Câu 13 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Trang 2Câu 14 Cho số phức z1= 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; −2; 3) B.→−n = (1; 3; −2) C.→−n = (1; −2; −1) D.→−n = (1; 2; 3)
Câu 16 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Câu 17 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 18 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 19 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 6√3 B |w|= √48 C |w|= √85 D |w|= 4√5
Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng
A z+ z + 1 B |z|2+ 2|z| + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 21 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 22 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 23 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 24 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 26 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16π
16
16π
16
9 .
Câu 27 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)
Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
Câu 28 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A M(2; −1; −2) B P(1; 2; 3) C Q(1; 2; −3) D N(2; 1; 2).
Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Trang 3Câu 30 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 31 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′
(x)= −1
(x)= 1
′
(x)= 2
x2
Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 33 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 7
1
1
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
√
Câu 35 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 36 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
C z là một số thực không dương D Phần thực của z là số âm.
Câu 37 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 1
2. B |w|min= 1 C |w|min = 2 D |w|min = 3
2.
Câu 38 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 39 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 40 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
Trang 4Câu 42 Cho a, b, c là các số thực và z= −1
2 +
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 43 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
1
3
4;
1
3
4;
3
3
4;
1
2; −1).
Câu 44 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 45 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
Câu 46 Cho số phức z= (1 + i)2
(1+ 2i) Số phức z có phần ảo là
Câu 47 Biết F(x)= x2là một nguyên hàm của hàm số f (x) trên R Giá trị của
3
R
1
[1+ f (x)]dx bằng
32
Câu 48 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
2(x
2+ 1)
1
2(2x)
1
2 C 3x(x2+ 1)
1
4x
−1
4
Câu 49 Biết
3
R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2
[ f (x)+ g(x)]dx bằng
Câu 50 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 1 và x = −1 B y= 2 và x = 1 C y= −1 và x = 2 D y= 1 và x = 2
Trang 5HẾT