Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6 22x − 13 6x + 6 32x = 0 A[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
6 .
Câu 2 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A y= −x4+ 3x2− 2 B y= x2− 2x+ 2
Câu 3 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A ln x > ln y B logax> logay C log 1
a
x> log1
a
y D log x > log y.
Câu 4 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 4
4πR3 D 4πR3
Câu 5 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′
A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′
D′theo a
Câu 6 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 7 Cho lăng trụ đều ABC.A′B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 8 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A a−
√
3< b−√3 B a
√
2 > b√2 C. √5
a< √5
b D ea > eb
Câu 9 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x − 1)2+ (y − 4)2+ (z + 2)2= 10 B (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40
C (x − 1)2+ (y − 4)2+ (z + 2)2= 40 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40
Câu 10 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 11 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
14.
Câu 12 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 13 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 14 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Trang 2Câu 15 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Câu 16 Nếu
6 R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1 ( f (x)+ g(x)) bằng
Câu 17 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 18 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực dương.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực không âm Câu 19 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là 3 và phần ảo là 2i B Phần thực là3 và phần ảo là 2.
C Phần thực là−3 và phần ảo là −2i D Phần thực là −3 và phần ảo là−2.
Câu 20 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 21 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z.
Câu 22 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z − z = 2a C z+ z = 2bi D z · z= a2− b2
Câu 23 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 24 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 25 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B m ≥ 0 hoặc m ≤ −1 C −1 ≤ m ≤ 0 D m ≥ 1 hoặc m ≤ 0 Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 27 NếuR4
−1 f(x)= 2 và R4
−1g(x)= 3 thì R4
−1[ f (x)+ g(x)] bằng
Câu 28 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 29 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A N(2; 1; 2) B M(2; −1; −2) C Q(1; 2; −3) D P(1; 2; 3).
Trang 3Câu 30 Phần ảo của số phức z= 2 − 3i là
Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= πxπ−1 B y′ = xπ−1 C y′ = π1xπ−1 D y′ = πxπ
Câu 32 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1
3x − 1 là đường thẳng có phương trình:
A y= −1
3.
Câu 33 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 1
4
9
18
35.
Câu 34 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 2)2
|z|2− 42 C P = (|z| − 4)2
|z|2− 22
Câu 36 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 37 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
2
√ 3
2 .
Câu 38 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 39 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 4
√ 5
√ 6
√ 2
√ 2
Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 42 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Trang 4Câu 43 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 44 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.→−b ⊥→−c B.
−
→ a
−
→ c
= √3 D.→−b ⊥→−a
Câu 45 Cho lăng trụ đứng ABC.A′B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′BC)bằng
600Biết diện tích của tam giác∆A′
BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′
A V = a3
√
3
3
Câu 46 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (0; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D [−3; 3].
Câu 47 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
A x − 2y − 2z − 4= 0 B x+ 2y + 2z + 8 = 0
C −x+ 2y + 2z + 4 = 0 D 3x − 4y+ 6z + 34 = 0
Câu 48 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m > 1 B m < −1 C −1 ≤ m < 0 D −1 ≤ m ≤ 0.
Câu 49 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 50 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
HẾT