1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 4 (625)

12 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Định dạng
Số trang 12
Dung lượng 151,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ A[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 9 lần C Tăng gấp 18 lần D Tăng gấp 27 lần.

Câu 2. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 3. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 4. Khối đa diện đều loại {3; 3} có số cạnh

Câu 5. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 6. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 7. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 8. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 9 Hình nào trong các hình sau đây không là khối đa diện?

Câu 10. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 11. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3√ 2

a3√ 3

12 .

Câu 12. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

2a√57

a√57

√ 57

Câu 13. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 14. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

√ 2

Câu 15. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Trang 2

Câu 16. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−1; 0) B (−∞; 0) và (1; +∞) C (−∞; −1) và (0; +∞) D (0; 1).

Câu 17. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 18. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 19. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = 6

5

!n C un = −2

3

!n D un = n3− 3n

n+ 1 .

Câu 20. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 21. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 22. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 23. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 24 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D.

Z

u0(x)

u(x)dx= log |u(x)| + C

Câu 25. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 26. Khối chóp ngũ giác có số cạnh là

Câu 27. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ 1

2

a2+ b2 D. √ ab

a2+ b2

Câu 29 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Trang 3

Câu 30. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 31. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 32. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = ey

− 1

Câu 33. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 34. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1 − i

√ 3

√ 3

Câu 35. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 37. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

1

3

2.

Câu 38. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 39. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2016

2017

4035

2018.

Câu 40. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 41. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 5

a3√ 3

12 .

Câu 43. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln x C y0 = 2x ln 2 D y0 = 1

ln 2.

Câu 44. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Trang 4

Câu 45. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

1

sin n

n .

Câu 46. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên (n − 1) lần B Giảm đi n lần C Không thay đổi D Tăng lên n lần.

Câu 47. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

4a3√3

2a3√3

5a3√3

3 .

Câu 48. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 49. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 26

Câu 50. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

√ 5

a3

a3

√ 15

25 .

Câu 51. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 3

2a3√ 6

9 .

Câu 52. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 53. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 54. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

3.

Câu 55. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

2x3ln 10. C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 56. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

A. 1

Câu 57. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Trang 5

Câu 58. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 59. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 6

6 . C V = πa3

√ 3

6 . D V = πa3

√ 3

2 .

Câu 60. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

Câu 61. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

a√2

√ 2

Câu 62. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 63. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 64. [1] Tập xác định của hàm số y= log3(2x+ 1) là

2

!

2;+∞

!

2;+∞

!

2

!

Câu 65. Hàm số y= x + 1

x có giá trị cực đại là

Câu 66. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

Câu 67. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 68. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 69. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

Câu 70. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 71. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

2e

π

√ 2

2 e

π

4

Trang 6

Câu 72. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 73. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Năm tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 74. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 75. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều đúng C Chỉ có (I) đúng D Cả hai đều sai.

Câu 76. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2

− 4M)2019

Câu 77. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

a

√ 57

√ 57

19 .

Câu 78. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 79. [1] Tập xác định của hàm số y= 2x−1là

A. D = (0; +∞) B. D = R \ {0} C. D = R \ {1} D. D = R

Câu 80. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 81. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 82. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2

e2

Câu 83. [1] Đạo hàm của làm số y = log x là

0 = ln 10

0 = 1

xln 10. D y

0 = 1

x.

Câu 84. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

5

23

13

100.

Trang 7

Câu 85 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 D.

Z ( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx

Câu 86. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

2.

Câu 87 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

dx = x + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

xαdx= xα+1

α + 1+ C, C là hằng số. D.

Z 1

xdx= ln |x| + C, C là hằng số

Câu 88 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.

Câu 89. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 90. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 91. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 92. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 93. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±3 B m= ±√2 C m= ±√3 D m= ±1

Câu 94. Khối đa diện đều loại {4; 3} có số cạnh

Câu 95. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 96. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3√3

3√ 3

2 .

Câu 97. Tính limcos n+ sin n

n2+ 1

Trang 8

Câu 98. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

e.

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 2

a3√ 3

a3√ 3

2 .

Câu 100. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 101. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11 − 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 9

11+ 19

Câu 102. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

9

3

4.

Câu 103. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 104 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 105. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 106. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 107. [2D1-3] Cho hàm số y = −1

3x

3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D −2 ≤ m ≤ −1.

Câu 108. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = 3a3

√ 3

2 . D V = 3a3√

3

Trang 9

Câu 109. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 70, 128 triệu đồng C 3, 5 triệu đồng D 20, 128 triệu đồng.

Câu 110. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3

2a3

4a3√3

3 .

Câu 112 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 113. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 114. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 115. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 3

3√

3√ 2

4 .

Câu 116. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 117. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 1

e. C M = e, m = 0 D M = e, m = 1

Câu 118. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 2

3.

Câu 119. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 120. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Trang 10

Câu 121. [3] Cho hình lập phương ABCD.A BC D có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

a√3

a√3

2 .

Câu 122 Phát biểu nào sau đây là sai?

n = 0

nk = 0

Câu 123. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 124. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= 1

ln 10. C f

0 (0)= ln 10 D f0(0)= 1

Câu 125. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 126. Khối đa diện đều loại {3; 5} có số mặt

Câu 127. Cho hai đường thẳng d và d0cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 128. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

1

√ 3

2 .

Câu 129. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√3 B m= ±√2 C m= ±1 D m= ±3

Câu 130. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

2 .

HẾT

Ngày đăng: 01/04/2023, 06:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN