1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt toán c1 (6)

4 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt toán c1 (6)
Trường học Đại học Bách Khoa Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2024
Thành phố Hà Nội
Định dạng
Số trang 4
Dung lượng 109,15 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng? A Ba mặt B Bốn mặt C Một mặt D Hai mặt Câu 2 Cho hàm[.]

Trang 1

Free LATEX

(Đề thi có 4 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 2 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 3. Cho

Z 1

0

xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 4. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

A. 27

Câu 5. [2] Cho hàm số y= log3(3x + x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 6. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 7. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C F(x)= G(x) trên khoảng (a; b)

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 8. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y= (x2− 3)extrên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 9. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 10. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 11. Tính lim n −1

n2+ 2

Câu 12. Cho hàm số y= x3+ 3x2

Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên khoảng (−2; 1).

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

Trang 2

Câu 13. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

3.

Câu 14. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 15 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 16. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 8 lần B Tăng gấp đôi C Tăng gấp 4 lần D Tăng gấp 6 lần.

Câu 17. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞[ f (x)g(x)]= ab

C lim

x→ +∞

f(x)

g(x) = a

Câu 18. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.

Câu 19 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

C.

Z

Z

dx = x + C, C là hằng số

Câu 20. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 21. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 22. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = R \ {1; 2} B. D = [2; 1] C. D = (−2; 1) D. D = R

Câu 23. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 24. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√3 B m= ±√2 C m= ±3 D m= ±1

Câu 25. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 26. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 3

Câu 27. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 28. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 3

2a3√ 6

a3

√ 3

2 .

Câu 29. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

1

8

8

9.

Câu 30. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 31. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

Câu 32. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 33. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 34. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

a3√3

8a3√3

4a3√3

9 .

Câu 36. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 7

√ 2

Câu 37. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 2

a3

√ 6

18 .

Câu 38. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

!

5

#

3

# D. " 2

5;+∞

!

Câu 39. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 40. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

3

3√ 3

a3√3

2 .

HẾT

Trang 4

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 25/03/2023, 18:52

w