1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg c1 (712)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg c1 (712)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 5
Dung lượng 118,97 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a v[.]

Trang 1

Tài liệu Free pdf LATEX

(Đề thi có 4 trang)

BÀI TẬP ÔN TẬP MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 2

a3√3

3√ 3

Câu 2 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 3. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 4. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của

S bằng

Câu 5. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị

P= a + b + c + d bằng?

Câu 6. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

a3√ 3

a3√ 3

12 .

Câu 7. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

2e

π

√ 3

2 e

π

Câu 8. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.

Câu 9. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 10. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng −∞;1

3

!

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng (1;+∞)

Trang 2

Câu 11. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

1

1

8.

Câu 12. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 13. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 1

0 = 2x ln x D y0 = 2x ln 2

Câu 14. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

12 .

Câu 15. Khối đa diện đều loại {3; 3} có số cạnh

Câu 16. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

3√ 3

a3

√ 3

a3

4 .

Câu 17. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

3.

Câu 18. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 19. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

3

Câu 20. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

20

50.(3)20

20

50.(3)30

40

50.(3)10

10

50.(3)40

450

Câu 21. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

A [−3; 1] B [−1; 3] C [1;+∞) D (−∞; −3].

Câu 22. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 23. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 24. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

Trang 2/4 Mã đề 1

Trang 3

Câu 25. [1] Giá trị của biểu thức 9log3 12

bằng

Câu 26. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 27. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

A 0 < m ≤ 1 B 2 ≤ m ≤ 3 C 2 < m ≤ 3 D 0 ≤ m ≤ 1.

Câu 28. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 29. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là 3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.

C Phần thực là −3, phần ảo là 4 D Phần thực là −3, phần ảo là −4.

Câu 30. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 20 mặt đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 31. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [0; 2] D m ∈ [−1; 0].

Câu 32. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

4. B m >

1

4. C m <

1

1

4.

Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Câu 34. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 35 Phát biểu nào sau đây là sai?

A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1

C lim √1

nk = 0 với k > 1

Câu 36. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A.

√ 3

3 .

Câu 37. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 1; 6) B ~u= (1; 0; 2) C ~u= (2; 2; −1) D ~u= (3; 4; −4)

Câu 38. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

7

3.

Trang 4

Câu 39. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x − 3)2+ (y + 1)2+ (z + 3)2= 9

4. B (x − 3)

2+ (y − 1)2+ (z − 3)2= 9

4.

C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4.

Câu 40. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 1

ln 10. C f

0 (0)= 1 D f0(0)= 10

Câu 41. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 42. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3√ 3

a3√ 3

a3

3 .

Câu 43. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

A [6, 5;+∞) B (4; 6, 5] C (4;+∞) D (−∞; 6, 5).

Câu 44. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

A (−1; 1) B (−∞; 1) C (1;+∞) D (−∞; −1).

Câu 45. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 46. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = (−2; 1) B. D = R C. D = R \ {1; 2} D. D = [2; 1]

Câu 47. Tìm giới hạn lim2n+ 1

n+ 1

Câu 48. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

A |z| = 17 B |z|= 10 C |z|= √17 D |z|= √10

Câu 49. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

24 .

Câu 50. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

HẾT

-Trang 4/4 Mã đề 1

Trang 5

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

50 B

Ngày đăng: 24/03/2023, 21:31

w