1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg c4 (51)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg c4 (51)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 5
Dung lượng 119,21 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Hình lập phương có bao nhiêu mặt phẳng đối xứng? A 6 m[.]

Trang 1

Tài liệu Free pdf LATEX

(Đề thi có 4 trang)

BÀI TẬP ÔN TẬP MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 2. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

11

2 .

Câu 3. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 27 lần B Tăng gấp 9 lần C Tăng gấp 18 lần D Tăng gấp 3 lần.

Câu 4. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a√57

2a√57

19 .

Câu 5. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Câu 6. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 6

a3

√ 2

6 .

Câu 7. [1] Tập xác định của hàm số y= 2x−1 là

A. D = R \ {0} B. D = R C. D = (0; +∞) D. D = R \ {1}

Câu 8. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

8.

Câu 9. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

A. 2

Câu 10. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 11. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 12. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 13. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

Trang 2

tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 15. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

36 .

Câu 16. Khối đa diện đều loại {4; 3} có số cạnh

Câu 17. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 18. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 19. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A. 7

-2

Câu 20. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 21. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 22. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

3.

Câu 23. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 24. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = R C. D = (1; +∞) D. D = (−∞; 1)

Câu 25. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 26. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 27. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Trang 2/4 Mã đề 1

Trang 3

Câu 28. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

1

3

Câu 29 Phát biểu nào sau đây là sai?

A lim qn= 1 với |q| > 1 B lim un= c (Với un = c là hằng số)

C lim 1

nk = 0 với k > 1 D lim √1

n = 0

Câu 30 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Câu 31. Hàm số f có nguyên hàm trên K nếu

Câu 32. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

!

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 33. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= loga2 B log2a= 1

loga2. C log2a= − loga2 D log2a= 1

log2a.

Câu 34. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (2; 2; −1) D ~u= (3; 4; −4)

Câu 35. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 36. Tính lim

x→1

x3− 1

x −1

Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

A. abc

b2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 38. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y+ 2

2 = z −3

x

1 = y

1 = z −1

1 .

C. x −2

2 = y −2

3 = z −3

x

2 = y −2

3 = z −3

−1 .

Trang 4

Câu 39. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 2

2 e

π

√ 3

2 e

π

6

Câu 40. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

Câu 41. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3

− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng √24

Câu 43. Khối đa diện đều loại {5; 3} có số mặt

Câu 44. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 45. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

8

1

8

9.

Câu 46. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 47. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

Câu 48. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

3

9

4.

Câu 49. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 50 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

HẾT

-Trang 4/4 Mã đề 1

Trang 5

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 23/03/2023, 09:26

w