1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt toán lớp 12 (661)

5 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt toán lớp 12 (661)
Trường học Trường Đại học Sư phạm Hà Nội
Chuyên ngành Toán
Thể loại Đề thi thử
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 109,14 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1 c] Cho a là số thực dương Giá trị của biểu thức a 4 3 3√ a2 bằng A a 5 8 B a 2 3 C a 7 3 D a 5 3 Câu 2 T[.]

Trang 1

Free LATEX

(Đề thi có 4 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2 bằng

Câu 2. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 3. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

B Câu (II) sai C Câu (III) sai D Câu (I) sai.

Câu 4. [1] Đạo hàm của làm số y = log x là

A y0 = ln 10

xln 10. D.

1

10 ln x.

Câu 5. Tính lim

x→1

x3− 1

x −1

Câu 6. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của

S bằng

Câu 7. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = ey

− 1 D xy0 = −ey+ 1

Câu 8. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

2017.

Câu 9. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 10. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1 − sin 2x B −1+ sin x cos x C −1+ 2 sin 2x D 1+ 2 sin 2x

Câu 11. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 12. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3

a3√3

a3

3 .

Trang 2

Câu 13. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 14. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

Câu 15. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.

Câu 16. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = 3a3√

3 D V = a3

√ 3

2 .

Câu 17. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 18. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 19. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 20. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x

Câu 21. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 22. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3

4a3√ 3

2a3

4a3

3 .

Câu 23. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 24. Thể tích của khối lập phương có cạnh bằng a

√ 2

A 2a3

2

3 . D V = 2a3

Câu 25. Khối đa diện đều loại {4; 3} có số mặt

Trang 2/4 Mã đề 1

Trang 3

Câu 26. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

f(x)

g(x) = a

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞[ f (x) − g(x)]= a − b

Câu 27. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. a

38

3a√58

3a

3a√38

29 .

Câu 28. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 29. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 30. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



A (−∞; 0] ∪ (1;+∞) B [0;+∞) C (−∞; −1) ∪ (1; +∞) D (1; +∞).

Câu 31. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 32. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1

2x3ln 10. B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 4 ln 2x

2x3ln 10 . D y

0 = 1 − 2 ln 2x

x3ln 10 .

Câu 33. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 34. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3√3

a3

3

Câu 35. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38

Câu 36. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

6.

Câu 37 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 D.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

Câu 38. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

2.

Trang 4

Câu 39. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 40. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

4 < m < 0 C m ≤ 0 D m > −5

4.

HẾT

-Trang 4/4 Mã đề 1

Trang 5

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 20/03/2023, 06:59

w