1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt toán (402)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt toán (402)
Trường học Đại học Sư phạm Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi
Thành phố Hà Nội
Định dạng
Số trang 4
Dung lượng 104,64 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh,[.]

Trang 1

Free LATEX

(Đề thi có 4 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 2. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 3. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

b2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 4. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 5. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB= a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

a√38

3a

3a√38

29 .

Câu 6. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 7. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Chỉ có (I) đúng C Cả hai đều đúng D Chỉ có (II) đúng.

Câu 8. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 9. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

√ 2

2 e

π

2e

π

Câu 10. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

! B. " 2

5;+∞

!

5

#

3

#

Câu 11. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 12. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Trang 2

Câu 13. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 14. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2;+∞

!

2;+∞

!

2

!

Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 16. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

13 .

Câu 17. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 18. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 19. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 20. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 21. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

2√e.

Câu 22. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 23. Tính lim

x→1

x3− 1

x −1

Câu 24. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 25. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 26. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 27. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

11

Trang 3

Câu 28. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e 4e+ 2.

Câu 29. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 30. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 31. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 32. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 33. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

2.

Câu 34. [1] Biết log6 √a= 2 thì log6abằng

Câu 35. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A −1+ sin x cos x B 1+ 2 sin 2x C −1+ 2 sin 2x D 1 − sin 2x.

Câu 36. Tính limcos n+ sin n

n2+ 1

Câu 37. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A f (x) có giới hạn hữu hạn khi x → a B lim

x→a + f(x)= lim

x→a − f(x)= a

C lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 38. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 39. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 40. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

a3√3

a3√3

12 .

HẾT

Trang 4

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 14/03/2023, 12:18

w