Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh,[.]
Trang 1Free LATEX
(Đề thi có 4 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 2. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 3. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Câu 4. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 5. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB= a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
58
a√38
3a
3a√38
29 .
Câu 6. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
Câu 7. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (I) đúng C Cả hai đều đúng D Chỉ có (II) đúng.
Câu 8. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
Câu 10. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A.
"
−2
3;+∞
! B. " 2
5;+∞
!
5
#
3
#
Câu 11. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 12. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Trang 2Câu 13. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 14. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2;+∞
!
2;+∞
!
2
!
Câu 15. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 16. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
13 .
Câu 17. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 18. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 19. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 20. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 21. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
2√e.
Câu 22. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 23. Tính lim
x→1
x3− 1
x −1
Câu 24. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 25. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 26. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 27. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
Trang 3Câu 28. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e 4e+ 2.
Câu 29. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
2.
Câu 30. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 31. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 32. Cho hàm số y= x3
− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 33. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
√ 3
1
2.
Câu 34. [1] Biết log6 √a= 2 thì log6abằng
Câu 35. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A −1+ sin x cos x B 1+ 2 sin 2x C −1+ 2 sin 2x D 1 − sin 2x.
Câu 36. Tính limcos n+ sin n
n2+ 1
Câu 37. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A f (x) có giới hạn hữu hạn khi x → a B lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 38. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 39. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 40. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√3
a3√3
a3√3
12 .
HẾT
Trang 4-ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1