1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt toán (301)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt Toán (301)
Trường học Đại học Sư phạm Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi thử
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 108,85 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [4 1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z[.]

Trang 1

Free LATEX

(Đề thi có 4 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A 2

√ 13

√ 26

Câu 2. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

3

9

4.

Câu 3. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 4. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3

√ 5

a3

√ 5

a3

√ 3

12 .

Câu 6. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

3

2

3.

Câu 7. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 8. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C F(x)= G(x) trên khoảng (a; b)

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 9. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 10. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 11. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.

Câu 12. Khối đa diện đều loại {4; 3} có số đỉnh

Trang 2

Câu 13. [1] Giá trị của biểu thức 9log3 12

bằng

Câu 14. Khối đa diện đều loại {3; 4} có số mặt

Câu 15. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 16. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3

a3

√ 3

a3

√ 3

2 .

Câu 17. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 18. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

36 .

Câu 19. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 20. Khối đa diện đều loại {3; 5} có số mặt

Câu 21. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3

√ 3

3√

3√ 3

12 .

Câu 22. Khối đa diện đều loại {3; 3} có số cạnh

Câu 23. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 6

a3

√ 3

a3

√ 3

24 .

Câu 24. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 25. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

Trang 2/4 Mã đề 1

Trang 3

Câu 26. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

A. 2

Câu 27. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 15

a3√ 6

a3√ 5

3 .

Câu 28. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3√ 15

a3√ 15

a3√ 5

25 .

Câu 29. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 30. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 31. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 1

2

2e3

Câu 33. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 34. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3√3

a3√2

12 .

Câu 35. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Đường phân giác góc phần tư thứ nhất.

C Trục ảo.

D Trục thực.

Câu 36. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

√ 2

2 .

Câu 37. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 38. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

x→a + f(x)= lim

x→a − f(x)= a

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D lim

x→af(x)= f (a)

Trang 4

Câu 39. Khối chóp ngũ giác có số cạnh là

Câu 40. Xác định phần ảo của số phức z= (√2+ 3i)2

A 6

HẾT

-Trang 4/4 Mã đề 1

Trang 5

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 14/03/2023, 12:18

w