Free LATEX (Đề thi có 3 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [4 1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam giác S AB là tam giá[.]
Trang 1Free LATEX
(Đề thi có 3 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
11a2
a2√ 5
a2√ 7
8 .
Câu 2. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 3. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
a3
4a3√3
2a3√3
3 .
Câu 4. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 20, 128 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.
Câu 5. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 6. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3√ 3
a3√ 3
a3√ 3
4 .
Câu 7. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 8. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 9. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 10. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 11. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
√
√ 57
a
√ 57
17 .
Câu 12. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 13. Tính lim
x→2
x+ 2
x bằng?
Trang 2Câu 14. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
A. 5
3
Câu 15. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
Câu 16. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = −2
3
!n C un = n2− 4n D un = n3− 3n
n+ 1 .
Câu 17. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3√15
a3√5
25 .
Câu 18. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
√ 10
Câu 19. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 20. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 21. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 22. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 23. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
e.
Câu 24. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 25. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 26. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3
√ 2
2√ 2
Câu 27. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên (n − 1) lần B Giảm đi n lần C Tăng lên n lần D Không thay đổi.
Trang 2/3 Mã đề 1
Trang 3Câu 28. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 29. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
√
√ 6
6 .
Câu 30. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 31. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 32. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 33. Khối đa diện đều loại {3; 5} có số cạnh
Câu 34. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng là hình lăng trụ đều.
B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ tứ giác đều là hình lập phương.
D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 35. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 36. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 8
√
√
√ 3
14√3
3 .
Câu 37. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
3
#
5
#
"
−2
3;+∞
! D. " 2
5;+∞
!
Câu 38. Tính lim n −1
n2+ 2
Câu 39 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z
f(x)g(x)dx=
Z
f(x)dx
Z g(x)dx
Câu 40. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Trục ảo.
Trang 4C Trục thực.
D Hai đường phân giác y= x và y = −x của các góc tọa độ
HẾT
-Trang 4/3 Mã đề 1
Trang 5ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1