1. Trang chủ
  2. » Tất cả

Lecture physics a2 schrodinger equation and applications

10 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Schrödinger Equation and Applications
Tác giả Tran Thi Ngoc Dung, Huynh Quang Linh
Trường học HCM University of Technology
Chuyên ngành Physics
Thể loại Giáo trình
Năm xuất bản 2016
Thành phố Ho Chi Minh City
Định dạng
Số trang 10
Dung lượng 583,95 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

SCHRÖDINGER EQUATION AND APPLICATIONS Tran Thi Ngoc Dung – Huynh Quang Linh – Physics A2 HCMUT 2016 CONTENTS I Schrödinger equation II Applications of Schrödinger equation 1 Particle in a 1 D infinite[.]

Trang 1

SCHRÖDINGER EQUATION

AND APPLICATIONS

Tran Thi Ngoc Dung – Huynh Quang Linh – Physics A2 HCMUT 2016

Trang 2

CONTENTS

I Schrödinger equation

II Applications of Schrödinger equation

1. Particle in a 1-D infinite potential well

2. Tunnel effect

Trang 3

) r p Et ( i

oe )

t , r (

De Brogile wave function of a free

particle of energy E, momentum p:

Wave function of a particle moving in a

field that having potential energy U(r) is:

) Et (

i

e ) r ( )

t , r

0 ) r ( )) r ( U E

( m 2 ) r

(

satisfies the time-independent

Schrödinger equation

)

r

If 1, 2 are the solutions of Schrödinger equation, =C 11 +C 22 is also

I Schrödinger Equation

Schrodinger equation

in Quantum Mechanics

Newton 2 nd law

in Classical mechanics

Solving Schrodinger equation

Wave function that describes the state of the particle, and the

possible energy levels of the particle

Trang 4

0 ) r (

mE

2 ) r (

2  

( ) ( )

2

2

FOR A FREE PARTICLE

( , )

( , )

( , ); ( , )

( , )

x y z

x y z

x y z

Et p r Et p x p y p z

i

Et p x p y p z o

x

i

Et p x p y p z

x o

x

i

x

p i

x

r t

   

   



 

2 2 2

2

2

( ) ( )

2

2

( , ) ( , )

2 2

2

2 ( ) ( ) 0

p

m

mE

mE

     

Derive Schrödinger Equation

Trang 5

0 )

r (

mE

2 )

r

+ For a free particle

E: is the Kinetic energy of the free particle

0 )

r ( )) r ( U E

(

m

2 )

r

+ For a particle in a region of potential energy U(r),

E is the energy of the particle, and KE is E-U

Derive Schrödinger Equation (cont.)

Trang 6

 ( x ) E

) x ( )) r ( U )

x

( dx

d m 2

) r ( E )

r ( )) r (

U m

2

) r ( m

2

Energy

Total PE

KE

2

2 2

2







Schrödinger Equation (cont.)

Trang 7

REVIEW about wave fuction

The statistic meaning of de Broglie Wave of a particle

dV

| ) t , r (

|

probability of finding the

particle per unit volume=

probabilty density

)

(

| ) t , r (

2

probability of finding the

particle in a volume dV

probability of finding the

particle over all space =1 (the

particle is certainly found)

1 dV

| ) t , r (

|

probability of finding the particle

V

2

dV

| ) t , r (

|

Normalized Condition of the wave function / Điều kiện chuẩn hóa của hàm sóng

Trang 8

Constraints on Wavefunction

In order to represent a physically observable system, the wavefunction must satisfy certain constraints:

- Must be a single-valued function

- M ust be normalizable This implies that the wavefunction approaches zero as x approaches infinity.

- Must be a continuous function of x.

- the first derivative of (x,t) must be continuous

Trang 9

O a x

U

Particle in a 1-D infinite potential energy well



a x , 0 x

a x 0

0 U

Particle can move freely inside the well, but it can not overcome the

potential barrier to get outside

For example: Electron in the metal can move freely, but it needs energy for escaping the metal

II Application of Schrodinger equation

1 Particle in a 1-D infinite potential energy well

Trang 10

(www.micro.uiuc.edu)

This is a basic problem in “Nano-science” It‟s a simplified (1D) model for an electron confined in a quantum structure (e.g., “quantum dot”), which scientists/engineers make, e.g., at the UIUC Microelectronics Laboratory !

KE term

PE term

Total E term

U = 0 for 0 < x < L

U = everywhere else

) ( )

( ) (

) (

2 2

2 2

x E

x x

U dx

x d

(www.kfa-juelich.de/isi/) (newt.phys.unsw.edu.au)

„Quantum dots‟

U(x)

Ngày đăng: 27/02/2023, 08:12