1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Planck, atomic physics, einstein AB coeffecients

55 197 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Planck, Atomic Physics, Einstein AB Coefficients
Trường học University of Electronic Science and Technology of China
Chuyên ngành Atomic Physics
Thể loại Lecture
Năm xuất bản 2003
Thành phố Chengdu
Định dạng
Số trang 55
Dung lượng 264,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 1Lecture 4: Photons and atoms • Electromagnetic modes in a box • Blackbody radiation; photons, Planck law • Photoelec

Trang 1

ECE 275B © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 1

Lecture 4: Photons and atoms

• Electromagnetic modes in a box

• Blackbody radiation; photons, Planck law

• Photoelectric effect

• Energy spectrum of hydrogen

• Einstein A/B coefficients

• Three-level laser

• Reading: Ch 7 of Verdeyen

Trang 2

E ( , , , ) = 3sin( ) ⋅ sin( ) ⋅ cos( ) ω

t i z y

x

E ( , , , ) = 1cos( ) ⋅ sin( ) ⋅ sin( ) ω

t i z y

1 k x + E k y + E k z =

E

( 2 2 2)

22

22

2

z y

x z

y

L

k k

Trang 3

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 3

How much energy is in the box?

1 )

,

Instantaneous energy per unit volume:

Total energy in box:

dV t

r u

2 1

2 2

2

2

1

E E

E n

n n

So, the amount of energy in the box can have any value.

We will show that this leads to a problem and must be wrong.

The energy in the box must be quantized: these are photons.

Trang 4

Concrete example of a mode:

3

2 3

2 2

2 1

2 2

2

2

1 2

1

E E

E E

n n

n

U total = x + y + z + + =

0 ,

, 0

; 1

k n

t i

L

y L

x E

t z y x

, , ,

0 ) , , , ( x y z t =

Ex

0 ) , , , ( x y z t =

Trang 5

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 5

Blackbody radiation

Consider E-M field in thermal equilibrium with

matter at some temperature T

If one is inside a box, do the walls glow?

Yes.

Trang 6

How is energy in the box related to temperature?

According to the equipartition theorem

from thermodynamics, every mode of the

system has an average energy <U>=(1/2)k B T.

Note: This is already a problem Energy infinite.

What is the energy per frequency, then

we will integrate over frequencies?

There are many modes per unit frequency

Each has energy k B T.

Trang 7

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 7

Modes per frequency

ν ν

ν ν

ε d kT N ( ) d

2

1 )

• ε(ν)dν is the energy between ν and ν+dν

• (This is the spectrum of the blackbody radiation.)

• N( ν)dν is the number of modes between ν and ν+dν.

Trang 8

Modes per frequency N ) ( ν d ν

3

2

3 ( 8 )

1 )

ν ν

ε ( ) d = kTN ( ) d

3

2 3

8 )

Experiments confirm at low frequencies only.

Trang 9

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 9

Recall Boltzmann factor P( ε):

“The probability for a physical system to be in

a state with energy ε is proportional to .”

Equipartition:

T

kB

e − ε /

(This is fundamentally linked to the concept of temperature.

Take it as an absolute truth for the whole class.)

Trang 10

Recall Boltzmann factor P( ε):

“The probability for a physical system to be in

a state with energy ε is proportional to .”

In order to get p( ε) to be between 0, 1 we need

Trang 11

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 11

Recall Boltzmann factor P( ε):

“The probability for a physical system to be in

a state with energy ε is proportional to .”

In order to get p( ε) to be between 0, 1 we need

T k

Trang 12

T k

kT

dE e

1 2

3

23

2

1

E

U total = 0

; 1

T k i

i

i

B i

ε ε

Trang 13

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 13

“What if….”

2 3

U total = 2 =

3

2 1

n an integer, h “Planck’s constant”

Trang 14

“What if….”

kT dE

e

dE e

E

T k E

T k E

B

B

2

1 2

1

3

/ 2 1

3

/ 2

1 2

3

23

23

U total = 2 =

3

2 1

Trang 15

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 15

/

) (

n

T k nh

T k nh n

i

T k i

T

k i

i

i i

B

B

B i

B i

e

e nh

e

e p

ν

ν ε

ε ε

ε ε

In HW#2, you will prove:

Trang 16

Planck at low frequency:

:

T k

h ν << B

1 / k T <<

h ν B

1 x

k h

h e

h

B B

T B k

− +

1 1

/

ν

υ υ

Trang 17

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 17

Planck at high frequency:

:

T k

h ν >> B

Not Equipartition!

T B k h T

B k h

e

h e

h

/ /

Trang 18

“What if….”

kT dE

e

dE e

E

T k E

T k E

B

B

2

1 2

1

3

/ 2 1

3

/ 2

1 2

3

23

23

U total = 2 =

3

2 1

Trang 19

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 19

Modes per frequency

ν ν

ν ν

2

1 )

ν ν

υ ν

π ν

π

υ ν

ν

c e

)

= Note: my ε(ν)/L 3 is Verdeyen’s ρ(ν).

Trang 20

h T

Trang 21

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 21

Intensity:

ν ν

π

υ ν

ν ε ν

c e

h L

d c

d

1

/ )

( )

4 / ( )

=emitted power per unit area

Trang 22

• We have “discovered” photons.

• However, blacksmiths have known

that hot metal glows red for hundreds of years.

• The arguments are for a “box” but the energy

comes in quanta (photons) for any a.c E-M field

• Note the length of the box did not really matter.

Trang 23

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 23

electrons that are liberated

from electrode A by the

• Electrons bound to metal by work function W

• If one photon is absorbed, energy of electron after being liberated is h ν−W=h(ν−ν c )

• eV 0 is the “stopping potential = h( ν-ν c )

• Slope of V 0 vs ν is h/e

(higher intensity)

Trang 24

• Maxwell’s equations are still valid.

• However, the energy of any E/M wave is quantized:

ε = n h ν

Trang 25

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 25

Energy spectrum of hydrogen: Emission

Atoms excited by electrical discharge.

Lines are seen at well defined wavelengths.

For example:

6 , 5 , 4 , 3

1 4

λ

m=1 Lyman series; m=2 Balmer series, etc.

Others are seen:

Trang 26

Energy spectrum of hydrogen: Absorption

Certain wavelengths are strongly absorbed These are the Lyman series and at elevated temperatures the Balmer series.

What does it mean? For photons, ε = n h ν

Hydrogen energy levels are quantized.

initial final

2 2

hcR

m n

Trang 27

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 27

Energy spectrum of hydrogen:

n=1

n=2

n=3 n=inf.

Lyman

Balmer

2

1 eV

6

13

n

ε

Trang 28

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

Similar to Hydrogen, but electron-electron interactions make them different.

Pauli exclusion principle:

No two electrons can occupy the same quantum state at the same time.

But the n=1 energy level has more than one quantum state.

1s↑ 1s↓

n=2 has more states:

2s↑ 2s↓ 2p ↑(m=1) 2p ↑(m=0) 2p ↑(m=-1) 2p ↓(m=1) 2p ↓(m=0) 2p ↓(m=-1)

And so on…

Trang 29

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 29

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Hydrogen

Trang 30

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Helium

Trang 31

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 31

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Lithium

Trang 32

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Berylium

Trang 33

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 33

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Boron

Trang 34

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Carbon

Trang 35

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 35

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Nitrogen

Trang 36

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Oxygen

Trang 37

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 37

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Flourine

Trang 38

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

Neon

Trang 39

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 39

Energy spectrum of all atoms:

n=1

n=2

n=3 n=inf.

2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)

1s↑ 1s↓

And so on for all the elements…

Important: In reality, all the n=2 states do not have the same energy!

Also, there are selection rules: only transitions between certain

classes of states are allowed.

In a course on atomic physics, you would calculate and learn all the levels.

Trang 40

Einstein A/B coeffecients

• Two-level atom (“two-level-onium”)

• Equilibrium occupation at temperature T

• Spontaneous emission rate

• Stimulated emission rate

• Absorption rate

• Relationship between all three rates

Trang 41

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 41

Two-level atom (“two-level-onium”)

∆ε

ε 2

ε 1

Consider an ensemble of them.

Let N 1 be the # of atoms in state 1.

Let N 2 be the # of atoms in state 2.

Recall Boltzmann factor:

“The probability for a physical system to be in

a state with energy ε is proportional to .” e − ε / kBT

T

kB

e N

N 2 / 1 = − ∆ ε /

Total

N N

Total

T k

T k

B

e N

N e

e N

N

/

1 /

/ 2

=

In thermal equilibrium, always more in state 1 than state 2.

This will mean later that we can’t make a laser from a system

in thermal equilibrium Need a pump.

Trang 43

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 43

Trang 44

First photon “stimulates”

emission of second photon

Trang 45

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 45

Add ‘em up:

dt

dN AN

N B

N

B dt

2 2

21 1

12

Trang 46

Add ‘em up:

dt

dN AN

N B

N

B dt

2 2

21 1

12

In thermal equilibrium, the average number N 2 and N 1 stay the same.

T k Total

T k

T k

B

e N

N e

e N

N

/

1 /

/ 2

=

Trang 47

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 47

Add ‘em up:

dt

dN AN

N B

N

B dt

2 2

21 1

12

In thermal equilibrium, the average number N 2 and N 1 stay the same.

T k Total

T k

T k

B

e N

N e

e N

N

/

1 /

/ 2

=

ν ν

π

υ ν

ν

c e

Trang 48

Add ‘em up:

dt

dN AN

N B

N

B dt

2 2

21 1

12

In thermal equilibrium, the average number N 2 and N 1 stay the same.

T k Total

T k

T k

B

e N

N e

e N

N

/

1 /

/ 2

=

ν ν

π

υ ν

ν

c e

)

=

In thermal equilibrium, we know ρ(ν) in a box!

Einstein showed that this can only be true if:

21 3

3 21

12

8

and

c

h A

B

Trang 49

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 49

Can we get gain?

I N B h

I abs = − ⋅ ⋅ ∆

∆ . υ 12 1 ( ν )

z c

I N B h

I stim em = ⋅ ⋅ ∆

∆ . . υ 21 2 ( ν )

) ( ) ( 2 1

21 ν

c

h z

Trang 50

Can we get gain?

two-level-onium

∆z

) ( ) ( 2 1

21 ν

c

h z

Need N 2 >N 1 for gain

If we put all atoms into excited state and pass the wave through a few times, they will eventually all end up half excited and half ground, and we will no longer have gain (This can be shown rigorously.)

Trang 51

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 51

Trang 53

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 53

Trang 55

ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 55

Then back to step one

Ngày đăng: 27/03/2014, 11:27