Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 1Lecture 4: Photons and atoms • Electromagnetic modes in a box • Blackbody radiation; photons, Planck law • Photoelec
Trang 1ECE 275B © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 1
Lecture 4: Photons and atoms
• Electromagnetic modes in a box
• Blackbody radiation; photons, Planck law
• Photoelectric effect
• Energy spectrum of hydrogen
• Einstein A/B coefficients
• Three-level laser
• Reading: Ch 7 of Verdeyen
Trang 2E ( , , , ) = 3sin( ) ⋅ sin( ) ⋅ cos( ) ω
t i z y
x
E ( , , , ) = 1cos( ) ⋅ sin( ) ⋅ sin( ) ω
t i z y
1 k x + E k y + E k z =
E
( 2 2 2)
22
22
2
z y
x z
y
L
k k
Trang 3ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 3
How much energy is in the box?
1 )
,
Instantaneous energy per unit volume:
Total energy in box:
dV t
r u
2 1
2 2
2
2
1
E E
E n
n n
So, the amount of energy in the box can have any value.
We will show that this leads to a problem and must be wrong.
The energy in the box must be quantized: these are photons.
Trang 4Concrete example of a mode:
3
2 3
2 2
2 1
2 2
2
2
1 2
1
E E
E E
n n
n
U total = x + y + z + + =
0 ,
, 0
; 1
k n
t i
L
y L
x E
t z y x
, , ,
0 ) , , , ( x y z t =
Ex
0 ) , , , ( x y z t =
Trang 5ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 5
Blackbody radiation
Consider E-M field in thermal equilibrium with
matter at some temperature T
If one is inside a box, do the walls glow?
Yes.
Trang 6How is energy in the box related to temperature?
According to the equipartition theorem
from thermodynamics, every mode of the
system has an average energy <U>=(1/2)k B T.
Note: This is already a problem Energy infinite.
What is the energy per frequency, then
we will integrate over frequencies?
There are many modes per unit frequency
Each has energy k B T.
Trang 7ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 7
Modes per frequency
ν ν
ν ν
ε d kT N ( ) d
2
1 )
• ε(ν)dν is the energy between ν and ν+dν
• (This is the spectrum of the blackbody radiation.)
• N( ν)dν is the number of modes between ν and ν+dν.
Trang 8Modes per frequency N ) ( ν d ν
3
2
3 ( 8 )
1 )
ν ν
ε ( ) d = kT ⋅ N ( ) d
3
2 3
8 )
Experiments confirm at low frequencies only.
Trang 9ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 9
Recall Boltzmann factor P( ε):
“The probability for a physical system to be in
a state with energy ε is proportional to .”
Equipartition:
T
kB
e − ε /
(This is fundamentally linked to the concept of temperature.
Take it as an absolute truth for the whole class.)
Trang 10Recall Boltzmann factor P( ε):
“The probability for a physical system to be in
a state with energy ε is proportional to .”
In order to get p( ε) to be between 0, 1 we need
Trang 11ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 11
Recall Boltzmann factor P( ε):
“The probability for a physical system to be in
a state with energy ε is proportional to .”
In order to get p( ε) to be between 0, 1 we need
T k
Trang 12T k
kT
dE e
1 2
3
23
2
1
E
U total = 0
; 1
T k i
i
i
B i
ε ε
Trang 13ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 13
“What if….”
2 3
U total = 2 =
3
2 1
n an integer, h “Planck’s constant”
Trang 14“What if….”
kT dE
e
dE e
E
T k E
T k E
B
B
2
1 2
1
3
/ 2 1
3
/ 2
1 2
3
23
23
U total = 2 =
3
2 1
Trang 15ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 15
/
) (
n
T k nh
T k nh n
i
T k i
T
k i
i
i i
B
B
B i
B i
e
e nh
e
e p
ν
ν ε
ε ε
ε ε
In HW#2, you will prove:
Trang 16Planck at low frequency:
:
T k
h ν << B
1 / k T <<
h ν B
1 x
k h
h e
h
B B
T B k
− +
1 1
/
ν
υ υ
Trang 17ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 17
Planck at high frequency:
:
T k
h ν >> B
Not Equipartition!
T B k h T
B k h
e
h e
h
/ /
Trang 18“What if….”
kT dE
e
dE e
E
T k E
T k E
B
B
2
1 2
1
3
/ 2 1
3
/ 2
1 2
3
23
23
U total = 2 =
3
2 1
Trang 19ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 19
Modes per frequency
ν ν
ν ν
2
1 )
ν ν
υ ν
π ν
π
υ ν
ν
c e
)
−
= Note: my ε(ν)/L 3 is Verdeyen’s ρ(ν).
Trang 20h T
Trang 21ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 21
Intensity:
ν ν
π
υ ν
ν ε ν
c e
h L
d c
d
1
/ )
( )
4 / ( )
=emitted power per unit area
Trang 22• We have “discovered” photons.
• However, blacksmiths have known
that hot metal glows red for hundreds of years.
• The arguments are for a “box” but the energy
comes in quanta (photons) for any a.c E-M field
• Note the length of the box did not really matter.
Trang 23ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 23
electrons that are liberated
from electrode A by the
• Electrons bound to metal by work function W
• If one photon is absorbed, energy of electron after being liberated is h ν−W=h(ν−ν c )
• eV 0 is the “stopping potential = h( ν-ν c )
• Slope of V 0 vs ν is h/e
(higher intensity)
Trang 24• Maxwell’s equations are still valid.
• However, the energy of any E/M wave is quantized:
ε = n h ν
Trang 25ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 25
Energy spectrum of hydrogen: Emission
Atoms excited by electrical discharge.
Lines are seen at well defined wavelengths.
For example:
6 , 5 , 4 , 3
1 4
λ
m=1 Lyman series; m=2 Balmer series, etc.
Others are seen:
Trang 26Energy spectrum of hydrogen: Absorption
Certain wavelengths are strongly absorbed These are the Lyman series and at elevated temperatures the Balmer series.
What does it mean? For photons, ε = n h ν
Hydrogen energy levels are quantized.
initial final
2 2
hcR
m n
Trang 27ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 27
Energy spectrum of hydrogen:
n=1
n=2
n=3 n=inf.
Lyman
Balmer
2
1 eV
6
13
n
ε
Trang 28Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
Similar to Hydrogen, but electron-electron interactions make them different.
Pauli exclusion principle:
No two electrons can occupy the same quantum state at the same time.
But the n=1 energy level has more than one quantum state.
1s↑ 1s↓
n=2 has more states:
2s↑ 2s↓ 2p ↑(m=1) 2p ↑(m=0) 2p ↑(m=-1) 2p ↓(m=1) 2p ↓(m=0) 2p ↓(m=-1)
And so on…
Trang 29ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 29
Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Hydrogen
Trang 30Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Helium
Trang 31ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 31
Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Lithium
Trang 32Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Berylium
Trang 33ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 33
Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Boron
Trang 34Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Carbon
Trang 35ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 35
Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Nitrogen
Trang 36Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Oxygen
Trang 37ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 37
Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Flourine
Trang 38Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
Neon
Trang 39ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 39
Energy spectrum of all atoms:
n=1
n=2
n=3 n=inf.
2s↑ 2s↓ 2p↑ (m=1) 2p↑ (m=0) 2p↑(m=-1) 2p↓(m=1) 2p↓(m=0) 2p ↓(m=-1)
1s↑ 1s↓
And so on for all the elements…
Important: In reality, all the n=2 states do not have the same energy!
Also, there are selection rules: only transitions between certain
classes of states are allowed.
In a course on atomic physics, you would calculate and learn all the levels.
Trang 40Einstein A/B coeffecients
• Two-level atom (“two-level-onium”)
• Equilibrium occupation at temperature T
• Spontaneous emission rate
• Stimulated emission rate
• Absorption rate
• Relationship between all three rates
Trang 41ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 41
Two-level atom (“two-level-onium”)
∆ε
ε 2
ε 1
Consider an ensemble of them.
Let N 1 be the # of atoms in state 1.
Let N 2 be the # of atoms in state 2.
Recall Boltzmann factor:
“The probability for a physical system to be in
a state with energy ε is proportional to .” e − ε / kBT
T
kB
e N
N 2 / 1 = − ∆ ε /
⇒
Total
N N
Total
T k
T k
B
e N
N e
e N
N
/
1 /
/ 2
=
⇒
In thermal equilibrium, always more in state 1 than state 2.
This will mean later that we can’t make a laser from a system
in thermal equilibrium Need a pump.
Trang 43ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 43
Trang 44First photon “stimulates”
emission of second photon
Trang 45ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 45
Add ‘em up:
dt
dN AN
N B
N
B dt
2 2
21 1
12
Trang 46Add ‘em up:
dt
dN AN
N B
N
B dt
2 2
21 1
12
In thermal equilibrium, the average number N 2 and N 1 stay the same.
T k Total
T k
T k
B
e N
N e
e N
N
/
1 /
/ 2
=
Trang 47ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 47
Add ‘em up:
dt
dN AN
N B
N
B dt
2 2
21 1
12
In thermal equilibrium, the average number N 2 and N 1 stay the same.
T k Total
T k
T k
B
e N
N e
e N
N
/
1 /
/ 2
=
ν ν
π
υ ν
ν
c e
Trang 48Add ‘em up:
dt
dN AN
N B
N
B dt
2 2
21 1
12
In thermal equilibrium, the average number N 2 and N 1 stay the same.
T k Total
T k
T k
B
e N
N e
e N
N
/
1 /
/ 2
=
ν ν
π
υ ν
ν
c e
)
−
=
In thermal equilibrium, we know ρ(ν) in a box!
Einstein showed that this can only be true if:
21 3
3 21
12
8
and
c
h A
B
Trang 49ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 49
Can we get gain?
I N B h
I abs = − ⋅ ⋅ ∆
∆ . υ 12 1 ( ν )
z c
I N B h
I stim em = ⋅ ⋅ ∆
∆ . . υ 21 2 ( ν )
) ( ) ( 2 1
21 ν
c
h z
Trang 50Can we get gain?
two-level-onium
∆z
) ( ) ( 2 1
21 ν
c
h z
Need N 2 >N 1 for gain
If we put all atoms into excited state and pass the wave through a few times, they will eventually all end up half excited and half ground, and we will no longer have gain (This can be shown rigorously.)
Trang 51ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 51
Trang 53ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 53
Trang 55ECE 275C © P.J Burke, Winter 2003 Last modified 1/2/2003 1:58 AM Lecture 4, Slide # 55
Then back to step one