Point groupsA set of point symmetry operations of a body constitutes its point group Examples of point groups: A set of elements A, B, C, ..... Examples of crystal structures: Ionic crys
Trang 1Solid State Physics • Kietųjų kūnų fizika
Trang 2Crystal structures
The crystalline state = the equilibrium state of solids
Experimental fact or theorem?
classification of crystals
V Karpus, Solid State Physics: Lecture 1 (2004)
Trang 3Translation symmetry
Wigner–Seitz cell primitive cell
atoms & equivalent points
K , 2 , 1 , 0 3
3 2
2 1
Trang 5Point groups
A set of point symmetry operations of a body constitutes its point group
Examples of point groups:
A set of elements A, B, C, is called a group G
if a law of their “multiplication” is defined,
and the following conditions are satisfied:
• if A and B ∈ G, then AB ∈ G
• multiplication is associative, (AB)C = A(BC)
• the set contains an element E such that
AE = EA = A
• for all A ∈ G there exist B such that
AB = BA = E
Group
Trang 6Classification of crystals
System Parameters of
crystallographic cell
Lattice type Point groupTriclinic (T) a ≠ b ≠ c
Trang 7h w v
1:
1:
[[uvw]]
3 1 0
2 2 _ _
Trang 8Examples of crystal structures: Ionic crystals
Cs+
Cl
-Bravais lattice: sc σ= 2
KCl, AgBr, MgO, MnO
V Karpus, Solid State Physics: Lecture 1 (2004)
Trang 9Examples of crystal structures: Metallic crystals
a
c b a
a
−+
== − +
++
c b a
1 2 2
1 1
coordination number = 12
Al, Cu, Ag, Ne
Trang 10Examples of crystal structures: Covalent crystals
coordination number = 4
aZnS = 5.41 Å GaAs, AlAs, ΙnP, CdTe
zinc blende structure
V Karpus, Solid State Physics: Lecture 1 (2004)
Trang 11The point symmetry of crystals determines the symmetry of macroscopic physical quantities
Crystallophysics
Neumann, P Curie, Voigt 19th c
[J F Nye, Physical properties of Crystals (Clarendon Press, 1964)]
Tensors
E j
isotropic system
3 33 2
32 1
31 3
3 23 2
22 1
21 2
3 13 2
12 1
11 1
E E
E j
E E
E j
E E
E j
σσ
sum
Trang 12Let the vector components in the old reference system are A = (A1, A2, A3)
What will be the A-components in the new system?
)'cos(
)'cos(
'
3
2
3 1 3
2 1 2
1 1 1
1
A
A
x x A
x x A
x x A
A1' 1
or =
old) via (new
' ij j
i a A
new) via (old
'
j ji
)'cos(
)'cos(
)'cos(
)'cos(
)'cos(
)'cos(
)'cos(
)'cos(
3 3 2
3 1
3
3 2 2
2 1
2
3 1 2
1 1
1
x x x
x x
x
x x x
x x
x
x x x
x x
x
a ij
transformation matrix
il jl
ija
old) via (new
' mi lj ij
ml a a T
new) via (old
'
ij jl im
ml a a T
Tensor components transform as multiplications
or r-vector components: x m'x l'= a mi a lj x i x j
V Karpus, Solid State Physics: Lecture 1 (2004)
Trang 13Tensors and symmetry
Symmetry operations as transformations
z z
y y
x x
y y
x x
0
0 1 0
0 0 1
0 1 0
0 0 1
1 0 0
0 1 0
a
z
y x
C3
z z
y y
x x
→
−
→
z z
y y
x x
0
0 1 0
0 0 1
0 1 0
0 0 1
1 0 0
0 1 0
a
x
y z
Math expression of the Neuman principle
ion ransformat symmetry t
the is
if ij a ij
lj mi
ij
2 1 S A
S 4
S 2
S 5
S 6
S 1
S 33
S 23
S 22
S 13
S 12
S 11 S
T
T T
T T
T T
T T
T T
T
Trang 14Tensors of the nth rank
i ij
x
U x
piezoelectric tensor of the 3 rd rank
kl ijkl
m
l x x a a a x x x
ijkl rl pk nj mi mnpr a a a a T
V Karpus, Solid State Physics: Lecture 1 (2004)
Trang 15• 2.7.5: Trečiojo rango tenzoriai Simetrija (1 pt)
• 2.7.6: Hooke’o dėsnis C tenzorius kubinėje sistemoje Izotropinės aplinkos (1 pt)
[E R Cohen and B N Taylor, Phys Today, 52(8), BG5 (1999)] – physical constants
Trang 16Reciprocal lattice (Gibbs 19 th c.)
V Karpus, Solid State Physics: Lecture 2 (2004)
without 2π in crystallography
]) [
(
] [
2
, ]) [
(
] [
2
, ]) [
(
] [
2
3 2 1
2 1 3
3 2 1
1 3 2
3 2 1
3 2 1
a a a
a a b
a a a
a a b
a a a
a a
K , 2 , 1 , 0 ,
3 3 2
2 1
• the reciprocal lattice (an arrangment of its sites) does not depend
on a choice of the primitive cell of the direct lattice
•
ij j
gl
) ( )
( if , ) i exp(
Trang 17Properties of reciprocal lattice
• Each vector g of the reciprocal lattice is perpendicular
to a set of the direct lattice planes.
Miller indices of the planes coincide with the g = mibi vector indices
m1/m, m2/m, m3/m (where m is the common multiplier of mi).
The distance between the planes is
• Volume of the reciprocal cell is
• The direct lattice is the reciprocal of its own reciprocal lattice
.
2
m g
cell
3 rc
V
Trang 18Examples of the reciprocal lattices
• sc (lattice constant = a)
k b
j b
i
b
a a
a
ππ
,
2,
2
3 2
• sc (lattice constant = 2π/a)
k a
j a
a
c b
a
c b a
a
−+
== − +
++
k j i b
−+
3 2 1
a a
a
πππ
• fcc (lattice constant = 4π/a)
Trang 19Brillouin zone (BZ) = the Wigner-Seitz cell of the reciprocal lattice
N
P D
bcc
X
Z W
X
U S K
Trang 20X-ray diffraction
1912 von Laue, Knipping, and Friedrich
the 1st experiment on X-ray diffraction
• el.-m nature of X-rays
• the inner structure of crystals
(Nobel prize, 1914)
1913 W H Bragg and W L Bragg
determined the KCl, NaCl, KBr, KI crystal structures
• X-ray crystallography
(Nobel prize, 1915)
Diffraction from lattice
~ interference of the secondary waves,emitted by atoms in a response to the incident wave
Trang 21λ α
α
3 3
3 3
2 2
2 2
1 1
1 1
cos '
cos
cos '
cos
cos '
cos
m a
m a
m a
2D
3D
Trang 23λ α
α
λ α
α
3 3
3 3
2 2
2 2
1 1
1 1
cos '
cos
cos '
cos
cos '
cos
m a
m a
2 2
1 1
2 '
,
2 '
,
2 '
,
m m
m
π π
π
k k a
k k a
k k a
k´ = k
(elastic scattering)
α' α
k
k´
k´ = k + g
What should be the incident wave vector,
that the way would diffract?
Trang 24k k'
d sin θ θ
g k
Derivation of the Bragg law
from the Laue equations
2θ
V Karpus, Solid State Physics: Lecture 2 (2004)
Trang 25incident wave:
) i exp(i
) exp(i
0
d
the secondary wave emitted by r-oscillator:
) i '
exp(i '
'
sin
0 2
2 )
(
t kr
d r
oscillator
) (r exp - i k '- k r
C E
E
Trang 26Primitive crystal lattice
Model:
• The single atom corresponds to each lattice site
• Positions of oscillators coincide with those of atoms
(electrons are concentrated on nuclei) ⇒ r = ln
number of electrons on atom
C
E
l
l k k'-
i - exp
A
A
scattering amplitude A ≠ 0 for k´- k = g
A ,'
cell Z N
• Another proof of the Laue formula k´= k + g
• Intensity of diffraction reflexes ∝ ZA2
• Diffraction peaks are infinitely narrow
(the peak width is determined by sample volume)
• Intensity of diffraction reflexes (for unpolarized X-beam)
1
~ N
δ
Trang 27Atomic factor
e
r l
-e
-e
How does the electron distribution in atoms
affect the diffraction?
e n r C
E
l
r l
k k
g g k
N C
(200)
(400) (420)(422)
(220) (222)
λ = 0.709 Å
Al
[B W Batterman et al., Phys Rev 122., , 68 (1961)]
Hartree-Fock calculations (for isolated atoms)
The electron distribution
• does not change the positions
of diffraction reflexes,
• does not smear them,
• affects intensity of the reflexes(enables investigations
of the electron distribution)
Trang 28Structure factor
Let us consider the diffraction from the crystal lattice with basis
e
r ρ
E
l
r ρ
l k k
N C
2
1 2
1 2
1 2
1 2 1
=
α
ρ
] e
e e
oddoreveneither
areall
Trang 29Quantum mechanical description of diffraction
Diffraction as a scattering of particles/waves by crystal
Initial state
(incident particle):
) / i
) / i
2
'
2 '
• Another proof of the Laue formula k´= k + g
• Justification of the diffraction of particles (electrons, neutrons, )
• Mk'k ∝ Vg possibility to analyse the interaction
k ' = +
Trang 30of the de Broglie principle of duality.
Davisson and G P Thomson –Nobel prize (1937) for discovery
of electron diffraction
V Karpus, Solid State Physics: Lecture 2 (2004)
Trang 31Neutron diffraction
[D P Mitchell and P N Powers, Phys Rev., 50, 486 (1936)]
[C G Shull, Rev Mod Phys., 67, 753 (1995)]
Shull (Oak Ridge reactor, Brookhaven): Nobel prize (1994)
V
, n
2
2 )
• Investigations of the H-compounds
(discovery of the crystal structure of ice:
[E O Wollan et al., Phys Rev., 92, 1082 (1953)])
• Investigations of magnetic structures
(discovery of the antiferomagnetic structure:
[C G Shull et al., Phys Rev., 83, 333 (1951)])
Trang 32NB:
• reciprocal lattice:
•
• Fourier transform of the periodic function:
• distance between crystallographic planes versus g-vector:
K , 2 , 1 , 0 ,
3 3 2 2 1
(
] [ 2
3 2 1
3 2
a a
b = π
K , 2 , 1 , 0 ,
= π p p
gl
) ( ) ( if , ) i exp(
)
g g
f f
f
m g
d = 2 π
• Brillouin zone of the fcc lattice:
centre: Γ [100]direction: ∆, X (BZ face) [111] direction: Λ, L (BZ face)
Reciprocal lattice
Properties of reciprocal lattice
Examples of reciprocal lattices
Classical description of X-ray diffraction
• Primitive crystal lattice
• 3.6.1: Difrakcinių refleksų plotis (0.75 pt)
V Karpus, Solid State Physics: Lecture 2 (2004)
Trang 33) (
)
; (
) ( r , R ψ r1, r2, K , ri, K R1, R2, K , Rk, K
ion - el ion
el ˆ ˆ
=
i
e m
V T
H
) ( ,
2 0
2 el
el el
-el
2
1 2
ˆ
ˆ
r r
h
= +
=
k
k k
k
, , , ,
V M
V T
2 ion
ion ion
-el V , , K , , K , , K , , K
Trang 34Adiabatic approximation I
or the Born–Oppenheimer (1927) approximation
is based on the fact, that
M
m0 << (e.g MSi = 14mp + 14mn ≈ 28mp → m0/M ≈ 2 10-5)
mp = 1836 m0
Ions are rather heavy and slow as compared to electrons
They do not follow all details of electron motion
and experience some averaged electron field
Electrons, on the contrary, feel istantaneous positions of atoms
Static lattice
) , ( )
( ˆ
ˆ
ion - el ion
ion
H
el el el
ion - el
el ˆ ( , )]
ˆ
) (
ion - ion
el E V R
) ( )
Trang 35Adiabatic approximation II
ψ ψ
H ˆ = [ ˆion + ˆel + el-ion] =
) ( )
, ( )
, ( r R ψel r R ψion R
ion el ion
el el
ion
2 ion
el ion
2
)]
(ˆ
k
k k
k k
E M
<<
M
m E
E
ion ion
el
2
* el
3 ion
el ion
2
d)]
(ˆ
M
r E
H
k
k k
E~
ion ion
el ion ( )]
ˆ
el ion
ion ion
Trang 36Chemical bonds
L Pauling, The Nature of Chemical Bond (Cornell University Press, 1939)
J C Pillips, Bonds and Bands in Semiconductors (Academic Press, 1973)
The binding energy, alias the cohesion energy,
εc is the energy required to disassemble a solid
into its constituent parts (atoms, ions or molecules)
εc is usually measured in electronvolts per atom / molecule
or in kilocalories per mole
mole
kcal05
23atom
eV
The main types of chemical bonds
Ar Ar
Ar
Ar Ar
-ionic bonds covalent bonds
metallic bonds van der Waals bonds
Si Si
Si
V Karpus, Solid State Physics: Lecture 3 (2004)
Trang 37Electronic configuration of atoms
Electron states in isolated atoms are classified by 4 quantum numbers:
• n = 1, 2, 3, principal quantum number
• l = 0, 1, , (n-1) orbital quantum number
• m = -l, , -1, 0, 1, , l magnetic quantum number
• s = -½, +½ spin
3p 3s
2s
1s
2p 3d
K L
Trang 38Ionic bond
Model of the ionic crystal:
a set of charged + and – spheresE.g.:
3Li: 1s2 2s
9F: 1s2 2s22p5
Li+ : 1s2
F–: 1s2 2s22p6
The valence electrons in ionic crystals
redistribute between atoms
to form + and – ions
,
) 0 ( )
0 ( 2
1
M
R R
a
2 M
C U
a core =
m = 6–10
(Pauling 1960)
Trang 39van der Waals bond
Fluctuating dipole interaction
Consider two neutral atoms (in free space) without dipole momenta, d = 0
r
r d
r dr
6
2 d
d
2
5 )
(
r
w r
(alias van der Waals or London potential):
Trang 40Lenard-Jones potential
6 12
LJ( )
r
A r
B r
LJ( ) 4
r r
r
0.014 0.02
3.98 3.65
0.0104 3.4
a 12
2
r
A r
A
Potential energy of molecular crystals
( ) N U u
V
j i
0 ( LJ 2
energy per atom
12
2 6 min
theor c
-0.089 -0.08
εctheor (eV) -0.027
εcexper (eV) -0.02
fcc structure:
A6 = 14.45392, A12= 12.13188
[J E Lennard-Jones and A E Ingham,
Proc Roy Soc (Lodon), A107, 636 (1925)]
V Karpus, Solid State Physics: Lecture 3 (2004)
Trang 41( ns r
ns ψ
ψ r =
)()
ns np
C, Si, Ge: (core) + ns2np2
Trang 42van der Waals bond
Fluctuating dipole potential
2
4 B
6
Trang 43One-electron approximation
Schrödinger equation of the electron subsystem:
el el el
ion el
ˆ
el el el
) (
2 ion
el 0
-2
2
1 )
∆
−
≠ r r r
h
?many-particle
self-consistent field
techniques
самосогласованное полеsuderintinis laukas
Trang 44construct the functional and vary ϕito minimize it
H H
( )
( )
( d
)
(
2 2
3 ion
el 0
2
r
r r
r
r
i j
j
'
e '
( )
( )
(
2
r r
r'
U
r r
r
d )
2
i j
j ' e
ρ
Hartree equation
• Hartree approximation reduces the many-body problem of interacting electrons to the one-particle one.
• The system of interacting electrons is changed to that of non-interacting “quasiparticles”.
• ϕi-functions describe “quasielectrons”, electrons dressed with e-e interaction.
– the one-particle equation of the electron which moves in the ion field Uel-ion
and in he effective field UH
of interaction with other electrons
V Karpus, Solid State Physics: Lecture 4 (2005)
Trang 45Hartree – Fock approximation (В Фок, 1930)
)()
()( 1 2 2
1
el el el
) (
2 ion
el 0
-2
2
1)
()
(
)()
()
(
)()
()
(
!1
2 1
2 2
2 1
2
1 1
1 1
1 HF
N N N
N
N N
q q
q
q q
q
q q
q
N
ϕϕ
ϕ
ϕϕ
ϕ
ϕϕ
ϕψ
K
KK
KK
()
()(
d
) (
2
*
i i i i
j
i j j i
j i j j
(d
)
(
2 2
ion el 0
2
i i i
j j j i
∆
r r r
( ϕ χ σ
ϕ q = r
) ( )
( )
( )
(
2
r r
e r'
r r
r r
r
d )
HF,
ρ ρ
∑
=
||) spin
*
* exch,
) ( ) (
) ( ) ( ) ( )
( )
(
j i
i j
i
'
' e
'
,
r r
r r
r
r r
r
ϕ ϕ
ϕ ϕ
ϕ
ϕ ρ
• Exchange interaction depends on the state under consideration ϕi
• The exchange charge density ρexch,i
depends on r Electron interacts with
the charge, which depends on the electron position.
Trang 46Jellium model
) ( )
( ) ( )
(
2
r r
|
|
~ ) (
2 ion
el
R r r
=
'
' e
r'
U
r r
r
d )
as if there is no e-e interaction at all
V Karpus, Solid State Physics: Lecture 4 (2005)
(
H r = V − + r
U
) i exp(
1 )
+
) (
jellium 3
d)
(
V
e R
V
R r
V eZN /
jellium =
+
ρ
) ( )
( ) ( )
(
2
r r
Trang 47Electron gas Drude 1900Sommerfeld (1927-1928)
Trang 48Boltzmann gas and Fermi gas
)2(
)2(4)
E
2 / 3
)2(
)2(4)
) exp[(
Θ
=
f
2 / 3 2
F 2
23
m n
]/
exp[
]/
|
|exp[ kBT kBT
2 / 3 2
B c
B c
2
2)
Trang 49Fermi gas in metals
rs,Al = 1.1 Å, rs,Au = 1.6 Å, rs,Na = 2.1 Å
• Fermi energy and momentum
m
n
2
) 3
( 2 2 / 3 2
F = h
F ( 3 n )
Trang 50Sommerfeld integration
) ( ' )
( 6
) ( d
) ( ) (
6
0 0
µ
π ε
ε ε
( d
) ( ) (
d
ε
ε ε
ε ε
K +
− +
− +
2
1 '' ( ) ( ) )
( ) ( ' )
( )
a
K +
1
d )
( d )
( '' )
( )
( ) (
d
ε
µ ε ε µ
µ ε
a
Proof
ε µ
ε
d
df
− ) ( ε
a
V Karpus, Solid State Physics: Lecture 4 (2005)
Trang 51Wigner crystal
kin
e - e
ε
V
=Γ
3
m B 3
c
19
3 / 1 c
B
27
803
[E Wigner, Phys Rev., 46, 1002 (1934)]
[W M Itano et al., Science, 279, 686 (1998)]
Trang 52(r = −e n r −n
ρ
local concentration of electrons
screening radius (Debye radius)
r V
n e
2 2
s
V a
rV r
)(
∂
∂
)/exp(
)(
e r
κ
V Karpus, Solid State Physics: Lecture 4 (2005)
Trang 53(r = −e n r −n
ρ
local concentration of electrons
screening radius (Thomas–Fermi radius)
r V
2 2
46
1
a
k n
)(
e r
ε
∝
n
Trang 54Screening and the dielectric function
4 )
exp(
), i i
exp(
), i i
exp(
), i i
ω ω
4
q q
q
= Φ
ω ω
ω
χ κ
, 2
2 ,
4 1
V s
+
=
) ,
ε q
ω
χ κ
π ω
1 1
) 0 ,
(
q a
n
B ,ω =
Trang 55Linhard formula
V H
, ,
2 ) 0 ( 2
ω ω
-V e
f
k
k k
k q
)(2
dlim
3 0
,
q k k
q k k
q
f f
h
)
-(2
d 2 lim
4 1 ) ,
3 0
2 2
q k k
q k k
q e
h t/
i i 2 /
++
+
+Ψ
=
Ψ
−
+ + +
+
αω
εεαω
εε
α ω ω
α ω ω
hh
h
ei
-e1
t t i -i s*
, t
t i i s , )
0 (
q k k
kr q
q k k
kr q k
F) 2 / ( 1
) 0 ,
(
q a
k q F
0
(
ω
ω ω
m
n e
π
Trang 56-2
,ee
t/
i i 2 / 3
ρ( ) = 0
• DOS:
3/2 F B
ε
V
=Γ
• Gaseous parameter:
)/exp(
2
s
a
r r
11
)0,
(
q a
Trang 57Band structure
ψ ε
h
Kronig–Penney problem Mathieu problem
tight binding approximationnearly free electron approximation
Bloch theorem
Trang 58φ κ
i L
i
R
i L
i
R
e e
e e
b b
a a
*
*
R
L L
a t
r
b
b t
r a
|
|
)(
cos1
i
|
|
)cos(
e
t
a t
Trang 59Mathieu problem
δ
2468
z
1 d
d
2 0
2
h
∈ = ε δ / Ua
2
2
∈
Trang 60i = +
) ( e
)
i i
+
3 2
) ( r l iklψ r
) ( )
( )
(
2 0
2
r r
, ) ( )
) (
) (
e
) (
e )
2 (
i i
i
r
a r a
r
a a
δ
i i
i
i i
=
+
= +
) ( e
) ( r = ikru r
( ˆ ) ( ) ( ) ( ) 2
0
r r
r k
) ( r l i lψ r
ψ ( r + l ) = eiδklψ ( r )
For any electron quantum state there exists a vector k such,
that a translation by the lattice vector l is equivalent
to multiplication of the wave function by the factor exp(ikl)
hk is called as quasimomentum
) ( )
( ,
) (
ψ