Phiếu học tập tuần toán 7 Website tailieumontoan com SỞ GIÁO DỤC VÀ ĐÀO TẠO VĨNH PHÚC ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2021 2022 MÔN THI TOÁN Thời gian làm bài 120 phút I PHẦN T[.]
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO
VĨNH PHÚC
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2021 - 2022 MÔN THI: TOÁN
Thời gian làm bài: 120 phút
I PHẦN TRẮC NGHIỆM(2,0 điểm)
Trong mỗi câu sau, mỗi câu chỉ có một lựa chọn đúng Em hãy ghi vào bài làm chữ cái in hoa đứng trước lựa chon đúng(Ví dụ: Câu 1 nếu chọn A là đúng thì viết 1.A)
Câu 1 Biểu thức ,- có nghĩa khi và chỉ khi
Câu 2 Đồ thị hàm số ( là tham số) đi qua điểm Giá trị của bằng
Câu 3 Tổng hai nghiệm của phương trình là
A B C D
Câu 4 Cho vuông tại có Độ dài cạnh bằng
A B C D
II PHẦN TỰ LUẬN (8,0 điểm)
Câu 5 (1,25 điểm) Giải phương trình
Câu 6 (1,25 điểm) Giải hệ phương trình
Câu 7 (1,0 điểm) Cho parabol và đường thẳng (với là tham số) Tìm tất cả các giá trị của tham số để đường thẳng cắt parabol tại hai điểm phân biệt có
sao cho
Câu 8 (1,0 điểm) Một đội công nhân và làm chung một công việc và dự định hoàn thành
trong 12 ngày Khi làm chung được 8 ngày thì đội được điều động đi làm việc khác, đội tiếp tục làm phần việc còn lại Kể từ khi làm một mình, do cải tiến cách làm nên năng suất của đội tăng gấp đôi, do đó đội đã hoàn thành phần việc còn lại trong ngày tiếp theo Hỏi với năng suất ban đầu thì mỗi đội làm một mình sẽ hoàn thành công việc đó trong bao lâu?
Câu 9 (3,0 điểm) Cho đường tròn và điểm nằm ngoài đường tròn Qua điểm kẻ hai tiếp tuyến và đến ( là các tiếp điểm) Kẻ tia (nằm giữa hai tia ) cắt đường tròn tại và ( nằm giữa và )
a) Chứng minh rằng tứ giác nội tiếp đường tròn
b) Chứng minh rằng và , với là giao điểm của và c) Đường thẳng qua song song với cắt đường thẳng tại Đường thẳng cắt
Trang 2Câu 10 (0,5 điểm) Cho là các số thực dương thỏa mãn điều kiện Chứng minh rằng
LỜI GIẢI ĐỀ TUYỂN SINH VÀO 10 TỈNH VĨNH PHÚC
NĂM HỌC 2021 – 2022
I PHẦN TRẮC NGHIỆM(2,0 điểm) Mỗi câu đúng được 0,5 điểm.
II PHẦN TỰ LUẬN (8,0 điểm)
Câu 5 (1,25 điểm) Giải phương trình
Lời giải
Phương trình đã cho có
Suy ra phương trình có hai nghiệm và
Câu 6 (1,25 điểm) Giải hệ phương trình
Lời giải
Câu 7 (1,0 điểm) Cho parabol và đường thẳng (với là tham số) Tìm tất cả các giá trị của tham số để đường thẳng cắt parabol tại hai điểm phân biệt có
sao cho
Lời giải
Phương trình hoành độ giao điểm của và là:
Ta có:
Điều kiện để cắt (P) tại hai điểm phân biệt là phương trình hoành độ giao điểm của
và có hai nghiệm phân biệt
ĐK:
Khi đó x1, x2 là các hoành độ giao điểm của và nên x1, x2 là các nghiệm của phương trình hoành độ của và Do đó theo hệ thức Viet ta có:
Trang 3Khi đó,
Câu 8 (1,0 điểm) Một đội công nhân và làm chung một công việc và dự định hoàn thành
trong 12 ngày Khi làm chung được 8 ngày thì đội được điều động đi làm việc khác, đội tiếp tục làm phần việc còn lại Kể từ khi làm một mình, do cải tiến cách làm nên năng suất của đội tăng gấp đôi, do đó đội đã hoàn thành phần việc còn lại trong ngày tiếp theo Hỏi với năng suất ban đầu thì mỗi đội làm một mình sẽ hoàn thành công việc đó trong bao lâu?
Lời giải
Gọi thời gian đội và đội làm một mình xong công việc lần lượt là (ngày)
ĐK
Mỗi ngày, đội làm được công việc
Mỗi ngày, đội làm được công việc
Mỗi ngày, hai đội làm được công việc
Ta có phương trình:
Trong ngày làm chung, hai đội làm được công việc
Trong ngày tiếp theo, do tăng năng suất gấp đôi nên đội làm được công việc
Ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Vậy thời gian đội và đội làm một mình xong công việc lần lượt là (ngày)
Trang 4tuyến và đến ( là các tiếp điểm) Kẻ tia (nằm giữa hai tia ) cắt đường tròn tại và ( nằm giữa và )
a) Chứng minh rằng tứ giác nội tiếp đường tròn
b) Chứng minh rằng và , với là giao điểm của và c) Đường thẳng qua song song với cắt đường thẳng tại Đường thẳng cắt đường thẳng tại Chứng minh rằng
Lời giải
K
P
O H
E
F
M
C
B
A
a) Chứng minh rằng các tứ giác nội tiếp đường tròn.
Vì AB, AC là các tiếp tuyến của nên
Xét tứ giác có
nên tứ giác nội tiếp đường tròn
b) Chứng minh rằng và , với là giao điểm của và
Do đó,
Trang 5vuông tại , đường cao nên
Từ (1) và (2) ta có
Suy ra
nội tiếp
c) Đường thẳng qua song song với cắt đường thẳng tại Đường thẳng cắt đường thẳng tại Chứng minh rằng
Gọi giao điểm của và là
Lại có:
Suy ra
Mà
là tia phân giác
ngoài của
Từ (3), (4) và (5) suy ra:
là đường trung bình
Câu 10 (0,5 điểm) Cho là các số thực dương thỏa mãn điều kiện Chứng minh rằng
Lời giải
Trang 6Do đó ta cần CM
Sử dụng bất đẳng thức AM – GM ta được:
Cộng từng vế các bất đẳng thức trên và thu gọn ta được: