Direct visual evidence obtained by atomic force microscopy demonstrates that when xanthan is adsorbed from aqueous solution onto the heterogeneously charged substrate mica, its helical conformation is distorted. Following adsorption it requires annealing for several hours to restore its ordered helical state.
Trang 1jo u r n al h om ep age :w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
Jonathan Moffata, Victor J Morrisb, Saphwan Al-Assafc, A Patrick Gunningb,∗
a Asylum Research an Oxford Instruments Company, Halifax Rd., High Wycombe, Buckinghamshire, HP12 3SE, UK
b Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
c Hydrocolloids Research Centre, Institute of Food Science & Innovation, Faculty of Science & Engineering, University of Chester, Parkgate Road, Chester CH1
4BJ, UK
a r t i c l e i n f o
Article history:
Received 9 March 2016
Received in revised form 14 April 2016
Accepted 18 April 2016
Available online 20 April 2016
Keywords:
Atomic force microscopy
Xanthan
Structural conformation
Counterions
a b s t r a c t Directvisualevidenceobtainedbyatomicforcemicroscopydemonstratesthatwhenxanthanisadsorbed fromaqueoussolutionontotheheterogeneouslychargedsubstratemica,itshelicalconformationis distorted.Followingadsorptionitrequiresannealingforseveralhourstorestoreitsorderedhelicalstate Oncethehelixstatereforms,theAFMimagesobtainedshowedclearresolutionoftheperiodicitywith
avalueof4.7nmconsistentwiththepreviouslypredictedmodels.Inaddition,theimagesalsoreveal evidencethatthehelixisformedbyadoublestrand,aclarificationofanambiguityofthexanthan ultrastructurethathasbeenoutstandingformanyyears
©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
XanthanisabacterialpolysaccharideproducedbyXanthamonas
campestris (Garcia-Ochoa, Santos, Casas, & Gomez, 2000) The
polysaccharideconsistsofalinear(1,4)linkeddglucosecellulosic
backbonesubstitutedwitharegulartrisaccharidesidechain,
con-tainingtwomannose(Man)andaglucuronicacid(GlcA),attached
oneveryotherglucoseatC-3.Thechargedsidechainconsistsof
DMan(1-4)DGlcA(1-2)␣DMan(1-.Theterminalmannoseunits
maycontainapyruvicacidsubstituteandthe␣-linkedmannose
unitsmayhaveanacetylgroupatpositionO-6(Phillips&Williams,
2009).Anothertworecentstudieshaveshownthattherecanbe
moreheterogeneityofxanthan’srepeatunitthanwaspreviously
assumedintermsoftheratioofthechargegroupswithinxanthan’s
sidechainsdependinguponthefermentationconditions:Thereare
6differentpatternsofattachmentofpyruvateandacetategroups
tothepentasacchariderepeatunit,andtherelativeabundanceof
theseaffectsthestabilityoftheorderedstructure(Kool,Gruppen,
Sworn,&Schols,2013;Kool,Gruppen,Sworn,&Schols,2014).Itis
notclearwhetherthisheterogeneityarisesduetointra-or
inter-molecularsubstitution.Thechargedgroupsonthesidechainsplay
avitalroleinxanthan’saqueoussolubilityandalsoitsstructural
conformation(Phillips&Williams,2009).Inthepresenceof
stabil-isingcounterions,whichshieldtheintramolecularcharge–charge
∗ Corresponding author.
E-mail address: patrick.gunning@ifr.ac.uk (A.P Gunning).
interactions,thesidechainsfolddowncompactlyagainstthe back-boneleadingtotheformationofa5-foldorderedhelicalstructure (Norton,Goodall,Frangou,Morris,&Rees,1984).Theordered struc-tureismuchstifferthanthedisordered‘randomcoil’conformation
Inthehelicalstatexanthanhasapersistencelengthinexcessof
100nm,rankingitamongstthestiffestknownbiopolymers Pre-viousstudieshaveproventhatelectrostaticinteractionsbetween the charged groups within xanthan and screening counterions determineitsultrastructuralconformationinsolution(Matsuda, Biyajima,&Sato,2009;Bejenariu,Popa,Picton,&LeCerf,2010; Brunchi,Morariu,&Bercea,2014)
Traditionalmethodshavebeenusedwidelytoinvestigatethe molecularconformationofpolysaccharides.Opticalrotation, circu-lardichroism,differentialscanningcalorimetryandrheologyare convenientmethods for following thecourseof disorder–order andorder–disorder transitionsinresponse toexternal variables (temperature,ionicstrength,concentrationofspecificcationsand denaturants).X-rayfibrediffractionremainstheonlytechnique capableofcharacterisingorderedstructuresatatomicresolution, providedthatthechainsarewellenoughorientedandaligned,but atomicresolutionhasnotyetbeenachievedforxanthan
Theprinciplequestionaddressedbythepresentstudyisthat there has been considerable ambiguity for many years onthe detailofxanthan’ssecondarystructure(Morris,1998).Theinitial interpretationofX-rayfibrediffractiondatawasthatitformeda singlehelix (Moorhouse,Walkinshaw,&Arnott,1977).A subse-quentstudy(Okuyamaetal.,1980),carriedoutinresponsetothe
“twostrands=doublehelix”lobby,examinedpossibledouble-helix http://dx.doi.org/10.1016/j.carbpol.2016.04.078
0144-8617/© 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
Trang 2J Moffat et al / Carbohydrate Polymers 148 (2016) 380–389 381
models.Itwasconcludedthat,onthebasisoftheX-rayevidence
alone,itwasnotpossibletoassignadouble-helixorsinglehelical
modelforxanthan
In terms of physical chemical studies the salt-induced
disorder–ordertransitionfollowedfirstorderratherthansecond
orderkinetics,whichsuggestedasinglehelix(Nortonetal.,1984)
Manygroups(Morris,1998)haveequatedobserveddimerization
ofxanthanwithdouble-helixformation;butthatisnotevidence
basedand itis potentiallyanoversimplifiedinterpretation.The
ambiguity with suchmethods is thefact that theyare
ensem-blemeasurements Thismeansthat theanalytical conclusionis
controlledby theratio of ordered todisordered states, sothat
theylackacertaindegreeofsensitivitycomparedto
microscop-icaltechniques,suchasatomicforcemicroscopy(AFM) AFMis
capableof visualisingthestructureofindividualmolecules.The
mainobjectiveofthisstudyistoprovidedirectevidenceonthe
natureofxanthan’ssecondarystructure.Theuniqueadvantageof
AFMisitsabilitytovisualisedirectlythetopologyofpolymer
net-worksundernear-nativeconditions,whichcanbeaverypowerful
complimentary technique to combine with ensemble
method-ologies Anintegral studyusingvarious biophysicaltechniques,
namely,AFM,gelpermeationchromatographywithmulti-angle
lightscattering(GPC-MALLS)andintrinsicviscositymeasurements
bycapillaryviscometryontheconformationofxanthan,
follow-ingvariousdifferenttreatments(heating,autoclaving,irradiation
andhighpressurehomogenisation),wasrecentlyreported(Gulrez,
Al-Assaf,Fang,Phillips,&Gunning,2012).Severalpolymer
param-etersderivedfromthesetechniques,suchastheradiusofgyration
(Rg),Mw,polydispersity,molarmassperunitcontourlengthofthe
rod(ML)andHugginsconstant(KH)werecorrelatedwellwiththe
resultsobtainedbyAFM.Itwaspossibletocorrelatetheheight
measurementsobtainedbyAFMwithvaluescloseto1000Dalton
pernanometre(Danm−1)and2000(Danm−1)assignedforsingle
anddoublehelix,respectivelyinagreementwithpreviousreports
whichsolelyreliedonlightscatteringmeasurements(Sato,Kojima,
Norisuye,&Fujita,1984;Sato,Norisuye,&Fujita,1984)
Further-more,usingpositively-chargedmica(coatedwithpoly-l-lysine)a
singlestrandmoleculewastrappedina‘randomcoil’conformation
(Gulrezetal.,2012).Thisisconsistentwiththewidelyagreedview
thatxanthanat lowconcentrationandnegligible ionicstrength
adopts‘randomcoil’conformation
The present study reveals new images of xanthan at
sub-molecular resolution revealing the fine detail of its secondary
structuredevelopment,whichhasenabledtheprocessofcharge
screeningtobeinvestigatedinamannerneverpreviouslyreported
2 Experimental
2.1 Atomicforcemicroscopy
Theatomicforcemicroscope(CypherAFM, AsylumResearch
Inc,anOxfordInstrumentscompany,SantaBarbara,CA,USA)was
operatedinACmodeinaqueousbufferscontainingdifferent
coun-terions.Buffer1:10mMHEPES3mMZnCl2pH5.3,andbuffer2:
10mMHEPES3mMNiCl2pH7.0(Sigma-AldrichChemical,Poole,
Dorset,UK) Oscillation of thecantilevers at their fundamental
resonant frequency wasdrivenusing ‘blueDrive’photo-thermal
excitation.Photothermalexcitationisanewtechnologydeveloped
byAsylum researchthatprovidesa morestable andcontrolled
formof cantilever oscillation.Thisis achieved bypositioning a
laserbeamwithwavelength425nmandmodulatedpowerdirectly
onto the cantilever’s bimetallic strip, as opposed to the
tradi-tionalpiezo-acousticmethod,whichmechanicallyoscillatesthetip
holdercausingmorepotentialdisturbanceofthesamples.Localised
heating bythe bluelaser causes thecantilever tobenddue to
thebimetallic strip effect and modulationof thepower causes theprobetooscillateatanaccuratelycontrolledfrequencyand amplitude.Thelaserpowermodulationfrequencywassetatthe fundamentalresonantfrequencyofthecantilever(1.37MHz)and thepowerlevel124.8Wsettogenerateanappropriatelysmall oscillationamplitude(∼1nm).Thefeedbackloopcontrolset-point wasalsokeptata verylowlevelofdampingofthecantilever’s free oscillation (∼5–10%) tominimise theloading forceon the molecules.TheAFMtipsusedwereArrowUHF-AuD(NanoWorld
AG,Neuchâtel,Switzerland).Scanratesweresetat1.5Hz 2.2 Preparationofxanthansolutions
Thexanthanusedinthisstudywasapowderedfoodgrade xan-thangum(KeltrolRD,CPKelco,Atlanta,GA,USA).‘RD’standsfor
areadilydissolvableproduct.Thestocksolutionwaspreparedata concentrationof1mgml−1inpurewater(18.2M).Thexanthan powderwasdispersedimmediatelyafteradditiontothewaterat
22◦Cbystirring.Itwasthenleftfor30mintohydratebefore heat-ingto95◦Cfor60mintocompletelydispersethemolecules.The stocksolutionwasallowedtocooltoroomtemperature(22◦C)and thendilutedto3gml−1intoeitherwater(method1,below),or theaqueousbuffers(method2,below).Thedilutedsolutionswere thenre-heatedto95◦Cfor60mintoreduceanyaggregationand allowedtocoolbackto22◦CpriortotheAFMimagingpreparation procedures
The additional heating step was merely to ensure that the samestructureandproportionsofsoluble/aggregatefractionsare presentinthetestmaterial(renaturedstate).Gulrezetal.(2012) investigated the effect of heat treatment on xanthan aqueous solutions(4mg/mL)dissolvedindistilledwater,whichwas sub-sequentlydilutedtocontain0.1MLiNO3prior toinjectioninto theGPC-MALLSsystem.Theydemonstratedthatheatingxanthan aqueoussolutionupto40minat85◦Cresultedinsimilar molec-ularweightparameters(i.e.weightaveragemolecularweight,% massrecoveryandpolydispersity).Furtherheatingupto60min resultedinanincreaseinthemassrecoveryandaslightincrease
inthemolecularweightasaresultofdisassociationoflarge aggre-gatesinitiallyretainedonthe0.45mfilter.Themolecularweight
isreducedtoalmosthalfwithfullmassrecoveryandanincrease
inthepolydispersity(from1.64to2.75)whenthedilutedsolution washeatedfor2at85◦C
2.1 AFMimagingpreparationprocedures Twomethodswereusedtophysisorbxanthanmoleculesonto freshly-cleavedmuscovitemica(AgarScientific,Cambridge,UK) 2.2.1 Method1:dropdeposition(includesdrying)
A3.5ldropletofxanthanataconcentrationof3gml−1in waterwasplacedontothefreshly-cleavedmicaandleftto evapo-rateatroomtemperature(22◦C).Whenfullydrythesamplewas thenplacedintotheliquidcelloftheAFMandimagedinthe aque-ousbuffersdescribedinSection2.1
2.2.2 Method2:in-situadsorption(no-drying)
100lofthebuffer-dilutedxanthansolution(3gml−1)was placed directlyintotheliquidcelloftheAFM,which contained freshly-cleavedmicaandthenimagedasdescribedinSection2.1
3 Results
Fig.1displaysanexampleofthedatathatwerealwaysobtained
attheearlystagesofimagingxanthaninaqueousbuffers,prepared
bybothmethods(Fig.1adropdeposition,Fig.1 in-situ adsorp-tion) The swirly white linesover one moleculein each image
Trang 3Fig 1.Early stage images of xanthan on mica in aqueous buffer (a) Method 1, drop-deposited, imaged in buffer 1 (b) Method 2, in-situ adsorbed from and imaged in buffer
2 Bottom panels: Line profiles depict the heights of the features beneath the white lines in the images.
illustratesthelocationof thecross-sectionsthatareprofiled in
thegraphbeneaththeimages.Thereasontheyareswirlylinesis
toenablerepetitivequantificationoftheheightofthemolecules
Theaveragevalueinbothcasesis2.06±0.19nm.Measurementof
heightisthemostaccuratewaytoquantifythediameterof
poly-merswithAFM,aslateraldimensionsaresignificantlyoversized
byprobe-broadening(Morris,Kirby,&Gunning,2009).Thevalue
oftheheightofthischainisslightlylargerthanthepredictedwidth
(1.8nm)ofxanthaninthedoublehelicalform(Millane,1990).The
linearityofthechainsdemonstratesrigidity.Thisprovidesevidence
thatatthisearlystage,despitetherebeingnosecondarystructure
visiblewithinthechains,xanthanisnotina disordered
confor-mation.Previousresearchhasshownthatxanthaninadisordered
‘randomcoil’statehasasignificantlylowerchainheightthaninthe
orderedstateandalsoappearslesslinearduetoitslackofrigidity
(Gulrezetal.,2012).However,asmentionedabovetheinteresting
issueisthat,despitethefactthatthedimensionsandlinearityof
thechainsatthisearlystageareclosertotheorderedconformation
ofxanthan,noperiodicitywasvisiblealonganyofthechains
AfteracertainlengthoftimeintheliquidcelloftheAFMthe
heliceswerevisualisedineachofthesamplespreparedbythetwo
differentmethods(Fig.2aandb).Oncetheheliceshaveannealed
withintheirorderedstatethewidthofthechains(accurately
mea-suredasheightbyAFM)is1.6±0.16nm,whichismorecompactby
approximately0.4nmthanthosemeasuredpriortoannealing.This
heightvalueisreasonably consistentwiththewidthofxanthan
obtainedfromx-rayfibrediffractionmeasurements(1.6–1.8nm)
(Millane,1990).Inbuffer1there-conformationofthehelixtook
∼16hoursandinbuffer2ittook∼4hours.Thedifferencebetween
thebufferscontainingNi2+andZn2+isthepH(7.0&5.3
respec-tively)
Thevaluesoftheperiodicityobservedafterannealinghavebeen
quantifiedbylineprofiling alongthemolecules(Fig.3a andb)
Thisrelatestothepitchofthehelices, andthevaluesobtained
are4.67±0.29nminbuffer1(Zn2+)and,althoughinFig.3 the
lineprofileis noisier,theactualnumberofvisible helicalturns
givesasimilarvalue;4.75±0.11nminbuffer2(Ni2+).These
val-uesarefullyconsistentwiththepreviousx-rayfibrediffraction
data(Millane&Narasaiah,1990;Okuyamaetal.,1980).Thereis
asignificantdifferenceintermsoftheconsistencyofthe struc-turalorderbetweenthedifferentadsorptionmethodologiesused
Inthedropdepositedsamples(method1)manyofthechains dis-playendswherethehelicesareunravelled(Figs.2a,4,and5a–c) andtheoccasionalcasewithasmall,unravelledsectionofthehelix arrowedinFig.4.Theheightsofthehelicalsectionandthe unrav-elledsectionarequantifiedbythelineprofileinFig.4.Thehelical sectionhasaheightof1.6nm andtheunravelledsectionhasa heightof0.6nm,whichislessthanhalfthevalue.Thedifferencein theheightsconfirmsthatthetallersectionisnotasimple dimeriza-tionoftwosinglechains.Itisthereforeamorecomplexstructural arrangementasexpectedforahelix
Furtheranalysisofthisimagewiththeunravelledsectionofthe orderedstructureisdisplayedinFig.5.Thelengthofthe unrav-elledsectionis4.6nm(Fig.5a).ThelineprofilesinFig.5 &creveal thatthedifferenceintheheightsofeachsectionareconsistentwith thosemeasuredontheotherxanthanmoleculeinFig.4:helical sec-tion1.6nm(Fig.5b)andunravelled‘mid-section’0.6nm(Fig.5c) Theheightequivalenceandeliminationofperiodicityconfirmsfull disorderingoftheunravelled‘mid-section’.Thefactthatthelength
oftheunravelledsectionisnolongerthanthehelicalpitchobserved
inbothbuffers(Fig.3)indicatesthatitisunravellingofthehelix intotwodisorderedstrands
TheimagesinFig.6revealsfurtherevidenceforadoublehelical conformationofxanthan;oneoftheproposedhelicalstructures suggested to be formedin a dilute solution.The suggestion is thatxanthan’sdoublehelixdissociatesintotwosinglechainsat
adenaturingconcentration(≤1mgml−1)but,despiteitseeming inconsistent,thereisapossibilitythatsinglechainscanreconstruct theintramoleculardoublehelicalstructureinananti-parallel man-nerwithahairpinloopatoneendduringtherenaturationprocess (Matsudaetal.,2009).ThearrowinFig.6 showsthatoccasional predictedhairpinloopsdoindeedexistandasecondoneisshown
inFig.6c(analternativelycolouredversionofFig.2a)
Althoughtheconformationofthexanthanchangedwithtimeto thefullyorderedhelicalstate,Fig.7showsasetofimages demon-stratingthatthemoleculesremainedstablyattachedtothemica
Trang 4J Moffat et al / Carbohydrate Polymers 148 (2016) 380–389 383
Fig 2.Resolution of the helical pitch of xanthan: (a) Method 1, drop-deposited, imaged in buffer 1 (b) Method 2, in-situ adsorbed from and imaged in buffer 2 Bottom panels: Line profiles depict the heights of the features beneath the white lines in the images.
invirtuallythesamepositionsoverthelongestinvestigatedtime
periodof16hoursintheliquidcellinbuffer1.Fig.7awasthelast
imagetakenduringtheinitialstageswhennoheliceswere
observ-ableandFig.7 wasthefirstimagetakenthefollowingdaywhen
theheliceswereobservable.Despitetherebeingasmallamount
ofdriftbetweenFig.7aandb(∼500nmtothetopright)thewhite
boxmarkershowsthematchingregionsinbothimageswithno
significantmovementofthemoleculesthemselves.Fig.7cshows
howconsistentthepositionofthemoleculesisinbothscansby
overlappingtheimages.Thelaterimage(Fig.7b)hasbeenplaced
ontopoftheearlierimage(Fig.7a)andsettoadifferentcolour
(green)withanopacityof42%sothatbothcanbevisualised
4 Discussion
Insolution,screeningofthexanthan’schargedgroupsby
coun-terionscanbeachievedrapidlyatanoptimalconcentrationofsalt
becausetheyaremobileandcansustainanequilibriumstate
Pre-viousresearchhasshownhowsensitivethehelicalconformation
ofxanthanistothelevelofsaltinthesolution(Bejenariuetal.,
2010;Brunchietal.,2014;Matsudaetal.,2009).Thetwo
aque-ousbuffersolutionsusedforimagingthexanthaninthepresent
studyincluded divalentcounterions (Ni2+ and Zn2+)at optimal
screeningconcentrationsfortwo purposes:Theprincipaloneis
tofacilitateadsorptionofxanthanontothemicasothatitcanbe
imagedinliquid.Withoutsufficientscreeningoftheelectrostatic
repulsionbetweennegativelychargedwatersolublemoleculesand
micathereisnopossibilityofsuccessfullyimagingmoleculesin
aqueousliquidsbecausetheywilldesorbfromthemicasurface,
eveniftheyhavebeenpreviouslydepositedbyairdrying.Thetwo
counterions(Ni2+,Zn2+)werediscoveredtobeoptimalforbinding
DNAtomicainaqueousbuffersduetotheirsmallionicradii(0.69
&0.74Årespectively),whichallowsthemtofitintothecavities
abovetherecessedhydroxylgroupsinthemicalattice(Hansma
&Laney,1996).Inaddition,Ni2+andZn2+haveanomalouslyhigh
enthalpiesofhydrationwhichisproposedtoenablethemtoform
strongcomplexeswithligandsotherthanwater(Hansma&Laney,
1996).Thesecondaspecttobeconsideredinthepresentstudyis
thatdivalentcounterionscausestabilisationofxanthan’s helical
conformationinsolutionatconcentrations≥1mM(Brunchietal.,
2014;Bejenariuetal.,2010).Thisiscrucialbecausethexanthan hadtobedilutedtoextremelylowconcentrations(≤3g/ml−1)to
ensurethatsub-monolayeradsorptionwasachievedonthemica surface.Athigherconcentrationsthemicasurfacebecomes over-crowdedwithmultilayersofxanthan,whichpreventsresolvingthe individualmolecules
Whenthexanthanmoleculesadsorbtothemica,whichhasa heterogeneoussurfacechargedistribution,thesituationisdifferent thaninsolution.Thelocalisedelectrostaticinteractionsthatoccur betweenthechargedgroupspresentonthepolysaccharidechain andthesolidmicasurfacearehighlyunlikelytobeoptimal,since
onthemicathespatialdistributionofthechargedgroupsarefixed
sotheycannotmoveandadapttothechargedgroupsonthe xan-thanmolecule.Theoreticalmodellingstudiesdemonstratedthat heterogeneouslychargedpolymersadsorbingtoheterogeneously chargedsurfacesdosobyadoptingtheirshape,interpretedas pat-ternrecognition(Chakraborty&Bratko1998;Golumbfskie,Pande,
&Chakroborty,1999).Ithasbeenpreviouslyreportedthat alter-ation ofxanthan solutionpHaffectsthetransitiontemperature (Bejenariuetal.,2010)althoughthepHdifferencesinvestigated
inthatstudyweresignificantlylarger(3,7&13)thaninthisstudy Anotherdifferencebetweenbuffers1&2isthewatersubstitution ratesofNickelcomparedtoZinc(Ni2+2.7×104/s,Zn2+5×108/s; Kobayashi,Nagayama,&Busujima,1998).Thisisthereforemore likelytobethereasonthatthere-annealingtimeofthexanthan helicesissignificantlydifferentinthebuffersusedinthepresent study
Thisclearlyhasaneffectonxanthan’sultrastructure,butthere aretwopotentialreasons.Theinitialandmoreobvious interpreta-tionofthetimerequirementtovisualisethehelicalperiodicitydue
totheslightstreakinessseenintheearlystageimages(specifically Fig.1a)isthatthexanthanmaynotbesufficientlystablyattached
tothemicaforhigh-resolutionimagingattheearlystages How-ever,thereisrelativelystrongevidencethatloosebindingmaynot
betheonlyreason.TheimagesinFig.7 showthatnearlyallof themoleculesremainedinpreciselythesamepositiononthemica overtheentireexperimenttimesotheymusthavebeenreasonably boundfromtheverystart.Thisisprobablyduetothecombination
ofthe‘patternrecognition’shapeadoptionofthemolecules bind-ingtothemostsuitablychargedregionsofthemicaandalsothe
Trang 5Fig 3. Helical pitch of xanthan (a) Method 1, drop-deposited, in the presence of Zn 2+ , (b) Method 2, in-situ adsorbed in the presence of Ni 2+ Bottom panels: Line profiles depict the heights of the features beneath the black lines in the images.
Trang 6J Moffat et al / Carbohydrate Polymers 148 (2016) 380–389 385
Fig 4.Method 1, drop deposited xanthan sample imaged in buffer 1 showing unravelling of the helices Bottom panel: Line profiles depict the heights of the features beneath the thin white line in the image.
strengthofthestiffpolymernetwork.Thisprovidesclearevidence
thatthemoleculesthatadoptedtheirconformationfrompartially
disorderedtothefullyorderedhelicalstateoverthetimeperiod
werethosewhichwereimagedduringtheinitialstages,andnota
setofotherxanthanmoleculesonthemica
Baseduponthisauniqueinterpretationofthelackofobservable
periodicityintheearlystageimagessuggeststhat,evenifitisin
afullyorderedconformationinsolution,xanthan’shelicalorderis
probablydistortedasitinitiallyadsorbstothemica.Thedistortion
ishoweverlimited;theheightmeasurementsandlinearity
illus-tratedinFig.1demonstratethatthedistortionisnotafullhelix
tocoiltransitionbutclearlyissufficienttoremoveanyobservable
periodicityalongthepolymerchain.Thisenablesinterpretationof
theheightreductionofthechainsfrom2nmattheinitialstage (Fig.1)to1.6nm(Figs.2,4,and5b).Helicalformationwas there-forelikelyduetoanannealingcompactionoftheslightlydistorted structure
Thereisafortunatebenefitfrommica’sdistortinginfluence; certainsectionsofthechains(Figs.2and4–6)donotfullyre-order whichenablesvisualisationofthecompositionofthehelix.Itis clearlydoublestranded.Thefactthatthelengthoftheunravelled sectioninFig.5aisnolongerthanthehelicalpitchobservedin bothbuffers(Fig.3)indicatesthatitisunravellingofthehelixinto twodisordered‘strands’.Althoughthisseemsobviousitprovides additional informationoninterpreting thenatureof thehelical structure,singleordoublehelical?Ifitwasasinglehelixitwould
Trang 7Fig 5.Additional measurements of the xanthan molecule containing the partially unravelled section Line profiles (right panels) depict the heights and distances of the features beneath the red lines in the AFM images (left panels) (a) Profile of the gap created by the unravelled section, with blue markers (in both panels) labelling the transition zones (b) Profile across the helical section (c) Profile across the unravelled section (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.).
notproducetwostrands.Unravellingofadoublehelixwould
pro-ducetwofullydisorderedstrands
Thevisualisation of thehairpins(Fig.6)providessignificant
assistanceintheinterpretationofthepartiallyunravelledmiddle
sectionoftheotherxanthanchaininFigs.4and5.Insummary,
thiscombinationofimagesprovidesfurtherdirectevidencethat
xanthan’sordered structure isa double helix.In addition,for a
doublehelixtobeformedbyasinglechainitwillwraparound
itselfin anti-parallelconformation.The imagesobtainedin this
studydemonstratethatxanthancan,byintra-molecular
associa-tion,formananti-paralleldoublehelix.Forthemajorityofimages
whichdonotshowhair-pinloopsthesimilarheightandpitch
sug-gesttheseareeitherparalleloranti-paralleldoublehelicesformed
byinter-molecularassociationoftwoxanthanchains
Thealternativethatthesemolecularstructurescouldbeformed
byassociationoftwosinglehelicesisunlikelyforthefollowing
rea-sons.Thestructurescontaininghairpinloopsarethesameasthose
thatdonotshowsuchloops.Instudiesoftherelatedxanthan-like
polysaccharideacetan(Kirby,Gunning,Morris,&Ridout,1995)it
waspossibletoimage,byAFM,side-by-sideassociationofhelices
inanalignedliquidcrystallinemonolayershowingtheexpected pitchandheightforthehelices.ThisshowsthatAFMwould distin-guishbetweenadoublehelixandpairedsinglehelices,sinceboth singlehelicesinthepairwouldneedtobindtothemica.Further,as discussedlater,althoughthereisastereo-chemicalbasisfor dimer-izationofchainstoformadoublehelix,thereisnostereo-chemical basisfordimerizationofsinglehelices,whichwouldrestrict aggre-gationtodimers,orexplainwhyitextends alongthecomplete lengthofthemolecules
In method 2, thesamples prepared byin-situ adsorption of thexanthanfromthebufferscontainingthedivalentcounterions, unravellingoftheheliceswasnotdetected(Figs.2 b,and3b) Thisreflectsthestatethatthexanthanislikelytobeinpriorto itsattachmenttomicainthedifferentmethods.Inmethod1(drop depositionfrompurewater)itislikelytobeinadisordered con-formationattheinitialstage,duetotheverylowconcentration
ofthexanthan,whichalsomeansthatthesolutionisverylowin ionicstrength.Asthewaterdropletevaporatesthepolysaccharide
Trang 8J Moffat et al / Carbohydrate Polymers 148 (2016) 380–389 387
Fig 6. (a) Hairpin loop images: Helical xanthan molecules with unravelled ends (b) white box marked region electronically zoomed, and (c) second hair-pinned molecule.
concentration and ionic strength increases driving xanthan
towardsitshelicalconformation,butnotsurprisinglytherecanbe
manysectionsofthechainsthatdonothavetimeorthecorrect
conditionstofullyre-order.Inmethod2themoleculeswill
pre-dominantlybeinthehelicalconformationinthesolutionduetothe
optimalconcentrationofthedivalentcounterionsinthebuffer,and
alsotheheating/coolingstepsinthesamplepreparationprocedure
(Gulrezetal.,2012)beforetheyadsorbtothemica.Ascanbeseen
intheexamplesimagesinFigs.2b,and3bthisgreatlyreducesthe
probabilityofanyfullyunravelledsectionsoftheirconformation
If thesecondary structure of xanthan was one of theother
previous interpretations (Norton et al., 1984) based upon the
measurementsofthekineticsofconformationalordering,namely
dimerizationofsinglehelices,thentwostrandswouldalsobea
predictableoutcome.Lightscatteringandopticalrotationvalues
camefrompoint-bypointequilibriummeasurements,sothiswas
notakinetic“timelag”effectbutadifferenceinthetemperatures
neededtotriggertheonsetofconformational orderingandthe
increaseinmolecularweight.Similarly,whenthevariablewasnot
temperaturebutconcentrationofcadoxen,reductioninmolecular
weightbeganatsubstantiallylowercadoxenconcentrationthan
lossofconformationalorder.However,thatcouldnotbeattributed
toslowkineticsofordering, becausethestartingpoint wasthe
orderedsolid.Thatwasinterpretedasxanthaninitiallyforming
singlehelicesinthedisorder-ordertransitionand then
dimeris-ing,butthereisvisualevidenceinthisstudy,whichrevealsthat
xanthanisnotlikelytobeadimerisedsinglehelix.Amorerecent studyshowedthatwhenxanthansolutionistreatedbyhigh pres-surehomogenisationthereisasignificantdecreaseinthemolecular weightbutthemeasurementsofmolecularweightperunit con-tourlengthoftherod(ML)suggestsitisstilldoublehelical,and evenafterstorageofthesolutionfor3daysthemolecularweight parametershardlychanged(Gulrezetal.,2012)
Dimerizationwouldberesolvablealongtheentire‘fibre’ifthe singleheliceswereparallel-aligned.Theonlypotentialreasonthat dimerisedsingle helices couldbe visually concealed until they becomedisorderedwouldbeiftheywrapverycompactlyaround eachotherandhenceappearassingleratherthandoublefibres But in that case theheights of both the ordered sections and theseparated‘strands’wouldnotmatchthevaluesquantifiedin Figs.4and5.The‘strands’wouldnotdroptosuchanextentbecause themodelledwidthofxanthanasasinglehelixwasthesamevalue (1.6nm)asthat ofthedoublehelix (Nortonetal.,1984)andof coursethatmeanstheorderedsectionifitwascomposedoftwo wrappedsingleheliceswouldverylikelybetallerthan1.6nm Anotherhypothesisisthatfordimerisedsinglehelicesto sepa-rateanddisordertoreachthelowheightofthe‘strands’inallthe unravelledsectionsvisibleintheAFMimagesthenthelengthof thedisorderedgapinFig.5awouldbedifferentthanthemeasure
ofthepitchoftheorderedsectionifitwascomposedoftwosingle helicesthatravelaroundeachother.Therefore,thelengthofthis unravelled‘mid-section’potentiallyprovidesfurtherdirectvisual
Trang 9Fig 7. (a) Example images of the stability of the xanthan molecules over a 16 hour time period in buffer 1 (a) at 1 hour, (b) at 16 hours, and (c) images overlaid (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)
evidencefavouringthatthesecondarystructureofxanthaninits
orderedstateisadoublehelix
AlthoughthisstudyisbasedsolelyuponAFMimagedatathe
conclusionisnotjustfromthevisualevidence.Thecombination
ofimageswithtopographicalquantificationhasenabledthe
inter-pretationoftheAFMdatainrelationtothepreviouspredictions
ofxanthan’ssecondarystructurefromalloftheothertechniques,
whichhavebeencarriedoutovermanyyears.Therefore,theheight
datafromalloftheorderedanddisorderedsectionsvisualisedin
theAFMimagesprovidesconfirmationthatthexanthanobserved
inthisstudyisdoublehelical.Notethatthesefactsarebasedon
theAFM-observedstructureswhichareofcourselimitedtothose
thatbindtomicaandnodimerisedsinglehelicalversionswere
detectedinanyoftheimagescaptured(n=41,typicalmolecules
perimage=50–250),butthere maystillbea possibilitythat in
solutionstochasticvariationsinxanthan’sconfirmationcanexist
duetomolecularmobility.Itisthereforepossiblethatthe
contro-versyoversingleordoublehelixformationmayhavearisendueto
experimentsdoneunderdifferentexperimentalconditionswhich
favouredintra-orinter-moleculeassociation:doublehelicescan formbyintra-molecularassociationofsinglechains
Itisinteresting toconsiderstereo-chemicalreasonswhythe helicalstructureiscomposedoftwointeractingchains.Thenature
of theprimary structure ofxanthan suggeststhat the distribu-tion of sidechains along the backbone resultsin anuncharged and a charged face of the cellulosic backbone Association of theunchargedfacesof thebackbone, anda twist into a 5-fold helix tooptimise thedistributionof charge onthehelix, could explaintheformationofthedoublehelix.Thiswouldbeconsistent withintra-molecularassociation(anti-parallel)orinter-molecular (anti-parallelorparallel)association.Suchamodelwouldbe con-sistent with the observed 6-fold helical complex with a pitch
of 5.6±0.1nm, formed between the xanthan-like polysaccha-rideacetanandtheglucomannankonjacmannan(Ridout,Cairns, Brownsey,&Morris,1998)andtheproposeddoublehelical struc-ture,which contains both a konjacmannan (uncharged) and a singleacetanchain(charged)withinthehelix(Chandrasekaran, Janaswamy,&Morris,2003).Acetanlikexanthanformsa5-fold helixwithapitchof4.8nm(Morris,Brownsey,Cairns,Chilvers,&
Trang 10J Moffat et al / Carbohydrate Polymers 148 (2016) 380–389 389
Miles,1989).Thetransitiontoa6-foldhelixcouldresultfromthe
differentoptimiseddistributionofchargealongthehelical
com-plex
5 Conclusions
The ability of AFM to resolve polysaccharide molecules at
sub-molecularresolutionandthedistortingeffectofthe
heteroge-neouslychargedsubstrate,mica,hasprovidedthefirsteverdirect
visualevidence which confirms that theproposed anti-parallel
doublehelicalultrastructureofxanthancanbeformedthrough
intra-molecularassociation.Forthemajorityoforderedstructures,
whichdonotshowthepresenceofloops,bothanti-paralleland
parallelmodels forthe doublehelix formed byinter-molecular
associationarepossible.Thedatainthisstudyconfirmsthatthe
precisionoftheformationofxanthan’ssecondaryhelicalstructure
isindeedsensitivelydrivenbyanoptimisationofintra-molecular
chargescreening.TheAFMdatasuggeststhatxanthan’s
predomi-nantequilibriumstructuralconformationisadoublehelix
Acknowledgments
TheauthorsthankEdwinMorris(UniversityCollegeCork)for
discussionsonthescientificprinciplesofthepotentialvariations
inxanthan’sorderedstructuralarrangements.Thanksarealsodue
toNeilWilson(UniversityofWarwick)fortakingpartinsomeof
thesuccessfulimagingofxanthanhelicesattheRMSMMC2015
conferenceinManchester.Fundingforthisworkwasprovidedby
BBSRCthroughitscorestrategicgranttoIFR
References
Bejenariu, A., Popa, M., Picton, L., & Le Cerf, D (2010) Effect of concentration, pH
and temperature on xanthan conformation: a preliminary study before
crosslinking Revue Roumaine de Chimie, 55, 147–152.
Brunchi, C.-E., Morariu, S., & Bercea, M (2014) Intrinsic viscosity and
conformational parameters of xanthan in aqueous solutions: salt addition
effect Colloids and Surfaces B: Biointerfaces, 122, 512–519.
Chakraborty, A K., & Bratko, D (1998) A simple theory and Monte Carlo
simulations for recognition between random heteropolymers and disordered
surfaces Journal of Chemical Physics, 108, 1676–1682.
Chandrasekaran, R., Janaswamy, S., & Morris, V J (2003) Acetan:glucomannan
interactions: a molecular modeling study Carbohydrate Research, 338,
2889–2898.
Garcia-Ochoa, F., Santos, V E., Casas, J A., & Gomez, E (2000) Xanthan gum:
production, recovery, and properties Biotechnology Advances, 18, 549–579.
Golumbfskie, A J., Pande, V S., & Chakroborty, A K (1999) Simulation of
biomimetic recognition between polymers and surfaces Proceedings of the
National Academy of Sciences of the United States of America, 96, 11707–11712.
Gulrez, S., Al-Assaf, S., Fang, Y., Phillips, G O., & Gunning, A P (2012) Revisiting the conformation of xanthan and the effect of industrially relevant treatments Carbohydrate Polymers, 90, 1235–1243.
Hansma, H G., & Laney, G E (1996) DNA binding to mica correlates with cationic radius: assay by atomic force microscopy Biophysical Journal, 70, 1933–1939.
Kirby, A R., Gunning, A P., Morris, V J., & Ridout, M J (1995) Observation of the helical structure of the bacterial polysaccharide acetan by atomic force microscopy Biophysical Journal, 68, 360–363.
Kobayashi, S., Nagayama, S., & Busujima, T (1998) Lewis acid catalysts stable in water: correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands J.
Am Chem Soc., 120, 8287–8288.
Kool, M M., Gruppen, H., Sworn, G., & Schols, H A (2013) Comparison of xanthans
by the relative abundance of its six constituent repeating units Carbohydrate Polymers, 98, 914–921.
Kool, M M., Gruppen, H., Sworn, G., & Schols, H A (2014) The influence of the six constituent xanthan repeating units on the order-disorder transition of xanthan Carbohydrate Polymers, 104, 94–100.
Matsuda, Y., Biyajima, Y., & Sato, T (2009) Thermal denaturation, renaturation, and aggregation of a double-helical polysaccharide xanthan in aqueous solution Polymer Journal, 41, 526–532.
Millane, R P (1990) Molecular and crystal structures of polysaccharides with cellulosic backbones In R Chandrasekaran (Ed.), Frontiers in carbohydrate research-2 (pp 168–190) London and New York: Eslevier Appled Science.
Millane, R P., & Narasaiah, T V (1990) X-ray fiber diffraction studies of a variant
of xanthan gum in which the sidechain terminal mannose unit is absent Carbohydrate Polymers, 12, 315–321.
Moorhouse, R., Walkinshaw, M D., & Arnott, S (1977) Xanthan gum molecular conformation and interactions In Sandford, P A Sandford, & A Laskin (Eds.), In extracellular microbial polysaccharides (Vol 45) (pp 90–102) San Francisco, CA USA: ACS Symp Ser.
Morris, V J (1998) Gelation of polysaccharides In S E Hill, D A Ledward, & J R Mitchell (Eds.), Functional properties of food macromolecules (2nd ed., Vol 45,
pp 143–226) Aspen Publishers ISBN0 7514 0421 7.
Morris, V J., Brownsey, G J., Cairns, P., Chilvers, G R., & Miles, M J (1989).
Molecular origins of acetan solution properties International Journal of Biological Macromolecules, 11, 326–328.
Morris, V J., Kirby, A R., & Gunning, A P (2009) Atomic force microscopy for biologists (2nd ed.) London: Imperial College Press ISBN-10: 184816467X (Chapter 2).
Norton, I T., Goodall, D M., Frangou, S A., Morris, E R., & Rees, D A (1984).
Mechanism and dynamics of conformational ordering in xanthan polysaccharide Journal of Molecular Biology, 175, 371–394.
Okuyama, K., Arnott, S., Moorhouse, R., Walkinshaw, M D., Atkins, E D T., & Wolf-Ullish, C H (1980) A D French, & K H Gardner (Eds.), Fiber diffraction methods (Vol 141) (pp 411–427) ACS Symposium Series http://dx.doi.org/10 1021/bk-1980-0141.ch026 Chapter 26, ISBN13: 9780841205895eISBN: 9780841207424
Phillips, G O., & Williams, P A (2009) Handbook of hydrocolloids (2nd ed.) Boston: CRC Press.
Ridout, M J., Cairns, P., Brownsey, G J., & Morris, V J (1998) Evidence for intermolecular binding between deacetylated acetan and the glucomannan konjac mannan Carbohydrate Research, 309, 375–379.
Sato, T., Kojima, S., Norisuye, T., & Fujita, H (1984) Double-stranded helix in dilute solution: further evidence Polymer Journal, 16, 423–429.
Sato, T., Norisuye, T., & Fujita, H (1984) Double-stranded helix in dilute solution: evidence from light scattering Polymer Journal, 16, 341–350.