Atomic force microscopy and Langmuir---Blodgettwww.journalofoptometry.org ORIGINAL ARTICLE Sarah Hagedorna , 1, Elizabeth Drolleb , c , 1, Holly Lorentza , e, Sruthi Srinivasana , ∗, Zoy
Trang 1Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
www.journalofoptometry.org
ORIGINAL ARTICLE
Sarah Hagedorna , 1, Elizabeth Drolleb , c , 1, Holly Lorentza , e, Sruthi Srinivasana , ∗,
Zoya Leonenkob , c , d, Lyndon Jonesa , b , d
aSchool of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
bDepartment of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
cWaterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
dDepartment of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
eDepartment of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
Received26August2014;accepted9December2014
KEYWORDS
Meibum;
deposits;
Langmuir -Blodgett
Abstract
Purpose: Thepurposeofthisexploratorystudy wastoinvestigatethedifferencesin meibo-mianglandsecretions, contactlens(CL) lipidextracts,andCLsurfacetopographybetween participantswithandwithoutmeibomianglanddysfunction(MGD)
Langmuir -Blodgett(LB)depositionwithsubsequentAtomicForceMicroscopy(AFM) visualiza-tionandsurfaceroughnessanalysis.CL Study:ParticipantswithandwithoutMGDworeboth etafilconAandbalafilconACLsintwodifferentphases.CLlipiddepositswereextractedand analyzed usingpressure-areaisothermswiththeLBtroughandCL surfacetopographies and roughnessvalueswerevisualizedusingAFM
Results: Meibum study:Non-MGDparticipantmeibumsamplesshowedlarger,circular aggre-gates with lower surface roughness,whereas meibum samples from participants with MGD showedmorelipidaggregates,greatersizevariabilityandhighersurfaceroughness.CL Study:
WornCLs fromparticipantswithMGD hadafewlargetearfilmdepositswithlowersurface roughness,whereasnon-MGDparticipant-wornlenseshadmanysmalllensdepositswithhigher surfaceroughness.Balafilcon A poredepths wereshallower inMGD participantworn lenses whencomparedtonon-MGDparticipantlenses.IsothermsofCLlipidextractsfromMGDand non-MGDparticipantsshowedaseamlessriseinsurfacepressureasareadecreased;however, extractsfromthetwodifferentlensmaterialsproduceddifferentisotherms
夽 Oneoftheauthors(L.J.)hasreceivedfundingoverthepast3yearsfromthefollowingcompanieswhoeitheraredirectlyinvolvedin
products used in this manuscript or are involved in the manufacture of competing products - Alcon, AMO, B&L, CIBA Vision, CooperVision, and Johnson & Johnson.
∗Correspondingauthor.
1 These two authors contributed equally to this publication.
http://dx.doi.org/10.1016/j.optom.2014.12.003
1888-4296/© 2014 Spanish General Council of Optometry Published by Elsevier España, S.L.U All rights reserved.
Trang 2Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
Conclusions:MGDandnon-MGDparticipant-wornCLdepositionwerefoundtodifferintype, amount, and pattern of lens deposits Lipids from MGD participants deposited irregularly whereaslipidsfromnon-MGDparticipantsshowedmoreuniformity
©2014SpanishGeneralCouncilofOptometry.PublishedbyElsevierEspaña,S.L.U.Allrights reserved
PALABRAS CLAVE
Meibomio;
Langmuir -Blodgett
contacto
Resumen
Objetivo:Elobjetivodeesteestudioexploratoriofueeldeinvestigarlasdiferenciasentrelas secrecionesdelasglándulasdeMeibomio,losextractoslipídicosdelaslentesdecontacto(LC),
ylatopografíadelasuperficiedelaslentesentrelosparticipantes,conysindisfuncióndelas glándulasdeMeibomio(DGM)
Métodos: Estudio de las Glándulas de Meibomio:Serecogieronlassecrecionesglandularesde todoslosparticipantes,estudiándosemediantepelículadeLangmuir -Blodgett(LB)yposterior visualización, utilizando unmicroscopio defuerza atómica (AFM) y analizandola rugosidad superficial.Estudio de las LC:LosparticipantesconysinDGMusaronlentesdeetafilconAy balafilconAendosfasesdiferentes.Seextrajeronyanalizaronlosdepósitoslipídicosutilizando isotermosdeáreadepresiónconlausaron,yvisualizándoselastopografíasdelasuperficiede
laLCylosvaloresdelarugosidadmedianteAFM
participantessinMGDreflejaronunconglomeradomayorycircularconunasuperficiemenos rugosa,mientrasquelasmuestrasdelassecrecionesdelosparticipantesconDGMreflejaron unosconglomeradosmáslipídicos,conmayorvariabilidaddetama˜no,yunamayorrugosidad
enlasuperficie.Estudio de las LC:LasLCdelosparticipantesconDGMmostraronunamayor cantidaddedepósitosdepelículalagrimal,conunasuperficiemenosrugosa,mientrasquelas
LCdelosparticipantessinDGMreflejaronunamenorcantidaddedepósitosyunamayor rugosi-dadenlasuperficie.LasprofundidadesdelosporosdebalafilconAeranmenoresenlaslentes
delosparticipantesconDGM,queenlosparticipantessinDGM.Losisotermosdelosextractos lipídicosdelasLCdelosparticipantesconosinDGMreflejaronunincrementonosignificativode
lapresióndesuperficieamedidaquedisminuíaelárea;sinembargo,losextractosprocedentes
delosdosdiferentesmaterialesreflejaronisotermosdistintos
Conclusiones:LassecrecionesdelasLCdelosparticipantes,conosinDGM,mostraron diferen-ciasencuantoatipo,cantidadypatróndelosdepósitosdelaslentes.Loslípidosprocedentesde losparticipantesconDGMsedepositarondemodoirregular,mientrasquelosdelosparticipantes sinDGMreflejaronmásuniformidad
©2014SpanishGeneralCouncilofOptometry.PublicadoporElsevierEspaña,S.L.U.Todoslos derechosreservados
Introduction
Thetearfilmishighlystructuredandisarrangedinto
sev-eralindistinctlayers.1,7 -9Theoutermostlayerismadeupof
lipidsproducedbythemeibomianglandsthatresidewithin
theupperandlowertarsalplates.1,9 -11Thislipidlayeris
fur-therdividedintonon-polarandpolarlipidlayers.4,5,7,9,12,13
The outermost non-polar lipid layer functions to control
the rate of evaporation of the aqueous layer, whereas
theunderlying polarlipid layer functions to stabilizeand
supportthenon-polarlayer.1,4,5,7,12 -14Astablelipidlayeris essential for maintaining ocular surface health and visual acuityanddisruptioninanyofthemanytearfilm compo-nents can cause ocular discomfortand dry eye.1,15 -17 Dry eyesyndromeisoneofthemostcommonoculardisorders andhastwomainmanifestations:aqueous teardeficiency andevaporativedeficiency.18Aqueousteardeficiencyisthe mostcommonandisaresultofadecreaseinlacrimalgland secretion.18Sincethenon-polarlipidlayerfunctionsto pre-venttheevaporationofaqueoustears,evaporativedryeye
isoftencausedbyadeficiencywithinthelipidlayer,often
aresultofaconditionknownasmeibomiangland dysfunc-tionorMGD.9,18,19 Somecommonocular symptomsofMGD
Trang 3Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
anddryeyeincludeburning,irritation,itching,and
fluctu-atingvision.9,10,19Themeibomianglandsecretion(meibum),
isnormallyaclearoilysubstance,however,themeibumof
MGDpatientsisoftenaviscouswhiteoryellowedsubstance,
withatoothpaste-likeconsistency.9,10
When a contact lens (CL) is placed on the cornea, it
hasadisruptiveeffectonthetearfilmandmay alterthe
structure, physiochemical properties, and composition of
thenormal tearfilm.6,20 In fact,the presenceof the lens
disrupts the normal tear film structure so that the lipid
layer covering the lens is thinner and less stable than in
theabsenceofalens.6,20 Asaresult,thetearfilmiseasily
destabilized,allowingthelipidstocomeintocontactwith
thelenses.6,7Thisinteractioncanleadtoabsorptionofthe
tear components, especially proteins and lipids, onto the
CL.6,7,21,22MGDanddryeyepatientstend tohavea
desta-bilized tearfilmtobeginwith, duetothepoorqualityof
meibum secretions This may resultin them experiencing
significantCLdepositionandCLintolerance.10
Twotechniquesthatcanbeusedtostudyocularlipidsand
CLdeposits,eithertogetherorinisolation,areatomicforce
microscopy(AFM)and theLangmuir -Blodgett(LB)trough
Atomicforce microscopy(AFM) isapowerfultechniqueto
studysoftbiologicalsamplessuchaslipidmembranesand
monolayers.23Itallowsforthree-dimensionalimagingatthe
nanoscale and molecular level as well as permitting the
study of physical properties of lipid films.24 -26 In AFM, a
sharp scanning probe (AFM tip)scans the sample surface
and theforces of interactionat each point aremeasured
toproduce an image of the surface morphology.27 -29 AFM
has much higher resolution than optical microscopy and
works well in both air and liquid environments Several
researchgroupshave usedAFMtostudywornandunworn
CLs.30 -35 However,to-datethismethodhas notbeen used
tospecifically study lenses frompatients with dry eye or
MGD
The Langmuir -Blodgett (LB) monolayer technique is
widelyusedtoproduceandstudythinfilmsofamphiphilic
moleculesattheair -waterinterface.36 ALBtroughcanbe
usedtodepositlayersofamphiphilicmoleculesontoa
sub-strate or performsurface pressure -area (/A)isotherms
Thisisothermdataprovidesinformationaboutthestructure,
phasetransitions,compressibility,intermolecularforcesand
interactions between lipid molecules.36 -38 If the surface
pressurebecomeshigherthantheintermolecularforces,the
monolayerwillcollapse(breakapart)andsomemolecules
willbesqueezedouttoformasecondlayer.Thepressureat
whichamonolayercollapsesgivestheobservermore
infor-mationaboutthecompressibilityandintermolecularforces
ofthesubstance.Depositedlipidlayerscanbestudiedwith
the AFM to assess their visual features and integrity.38 -40
Whilesomeresearchgroups haveundertakenexperiments
onhumanmeibumusingtheLBtrough41andrecentlysome
experimentshave been undertakenwith theLB trough to
study tear filmcomponents,42 usingthis technique is still
relativelynovelfortearfilmanalysis
The objectiveofthisexploratorystudy wastouseAFM
andaLBmonolayertechniquetoexploreocularlipidfilms
inordertodeterminethedifferences,ifany,betweenthe
contactlensdepositsonhuman wornlenses, contactlens
lipidextractsandmeibomianglandsecretionsbetweenMGD
patientsandnon-MGDparticipants
Methods
Thestudywasstructuredintwoparts:
Meibum study: Meibomian gland secretions were col-lectedfromMGDandnon-MGDparticipantsandstudiedvia
LBandAFM
Contact lens study:MGDandnon-MGDparticipantswore both Acuvue 2 (etafilcon A) and PureVision (balafilcon A) lenses in two consecutive wear phases Worn contact lens (CL) lipids were extracted and studied by measur-ing pressure -area isotherms with the LB Worn CLs were imagedwithAFM tostudy accumulation of lens deposits Etafilcon A and balafilcon A were chosen as the study lenses due to their distinct material properties Previous studies43,44 -47haveshownthatetafilconA(anFDAgroupIV, stronglyionic,relatively hydrophilicmaterial)accumulate lowerlevelsoflipiddepositsthanbalafilconA(anFDAgroup
V, mildly ionic, silicone hydrogel, relatively hydrophobic material)
preparation
ApprovalofthisprojectwasgrantedthroughtheOfficeof ResearchEthicsattheUniversityofWaterlooandall proce-duresadheredtothetenetsoftheDeclarationofHelsinki ParticipantswererecruitedattheCentreforContactLens Research(CCLR),SchoolofOptometryandVisionScienceat theUniversityofWaterloo.Informedconsentwasobtained from all participants, following explanation of the pur-pose of the study and procedures tobe undertaken The study was conducted as a two part study (meibum study and CL study) Meibomian gland secretions or patient-worncontactlenseswerecollectedfrompatientsforeach study
Clinical assessment
Thestudy consisted ofa singlevisitat which study varia-bleswerecollected.Screeningandthestudyvisitoccurred sequentiallyonthesameday.Therewasnorandomization
ormaskinginthisstudy.Tennon-CLwearerswererecruited and categorized into 2 groups: a non MGD (non-dry eye) group (n=5) and an MGD (dry eye) group (n=5), based on fourfactors:
1 Symptomassessment:ParticipantscompletedtheOcular SurfaceDiseaseIndex©(OSDI)symptomassessmenttool Broadly,theOSDIscoringisbasedona0 -100scale,with higherscoresrepresentinggreaterdisabilityorlevelsof symptoms
2 Tearfilmbreakuptime(TFBUT):Theslitlampwassetat
amagnificationof10 -16×usingcobaltblueillumination andayellowbarrierfilterwasusedwhilerecordingthe TFBUT.Whileholdingtheright eyeopen,theexaminer instilledadrop of2%preservative-freesodium fluores-cein onto the superior bulbarconjunctiva of the right eye The participant was instructed to blink several times tomixthefluoresceinwiththetear film Imme-diately followingthis procedure, TFBUT wasmeasured
Trang 4Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
3 consecutive times and the average of these was
recorded asTFBUT The time that elapsed between a
blink andthe firstsign ofa darkarea wasrecorded as
theTFBUT.Thisprocedurewasrepeatedinthelefteye
3 Fluoresceincornealstaining:Cornealstainingwas
eval-uated approximately 2min following fluorescein dye
instillation Corneal staining was assessed at a
magni-ficationof 10 -16×usingcobaltblueilluminationanda
yellow barrier filter.Theright eye wasevaluatedfirst,
followed by the left eye Staining was graded on a 0
(nonetominimal)to4(severestaining)in5regionsof
thecornea(central,nasal,temporal,inferiorand
supe-rior).Thefinalscorewasobtainedbysummingthescores
(0 -20)
4 Meibumsecretionqualityassessment:Meibumsecretion
quality score was assessed in both eyes
Secre-tion quality score was assessed using a 0 -3 grading
scale (grade 0=normal, clear oil expressed; grade
1=opaque, diffusely turbid, normal viscosity; grade
2=opaque, increased viscosity; grade 3=inspissated
(thick, toothpaste-like appearance)) meibum or not
expressible glands.Meibum wasexpressed by applying
digital pressure on the lower lid and viewed at the
slit-lamp All evaluations were conducted by a single
examiner
ParticipantswerecategorizedasMGD(dryeye,symptom
score≥13,tearbreakuptime≤4s,cornealstainingscoreof
≥4,meibumsecretionqualityscoreof≥1(ona0 -3scale)
inatleastonesector(nasal,centralortemporal)oflower
lid)or asnon-MGD(non-dryeye,symptomscore≤12,tear
breakuptime≥5s,cornealstainingscoreof ≤1,meibum
secretionqualityscoreofzero(ona0 -3scale)).Participants
whohadanyotheroculardiseaseandwhousedanytopical
medicationsthataffectedocularhealthwereexcludedfrom
thestudy
Collection of meibum
A Mastrota paddle was placed nasally behind the lower
lid to retract the lower lid away fromthe eye while the
patientwaslooking upward.Using asterile cotton-tipped
applicator, gentle pressure on the lid against the face of
thepaddlewasappliedtoforcetheexpressionofmeibum
fromwithinthemeibomianglands.Whilekeepingthelower
lid retractedwith thepaddle toavoid contact withtears
in the lower cul-de-sac, the expressed meibum was
col-lectedbycarefullyglidinga smalldegreased metalocular
spud(EllisEyeSpud,KatenaPartNo.K2-4100)alongthelid
margintocollect anoilypearlofmaterial.Thismotionof
compression,thencollection,wasconductedbyslidingthe
paddlealongtheinsideofthelowerlid.Approximately3 -4
‘‘collections’’wereperformedforeacheye.Thisprocedure
wasrepeatedfor thelefteye andthe meibum fromboth
eyeswaspooled.Meibumsampleswere placedona glass
coverslipandlaidinabrownglassspecimenjar Nitrogen
gaswasthenblownintothespecimenjar,thejarwascapped
andwasstoredimmediatelyat−80◦Cuntilprocessing.The
spud,paddleandspatulausedformeibumcollectionwere
pre-sterilized by autoclaving and wiping with an alcohol
swab
Screening and fitting n=10 (5 symptomatic of DE and 5 asymptomatic)
Phase 1 : Acuvue 2 or pure vision
(Randomized)
Phase 2 : Acuvue 2 or pure vision
(Randomized)
2 wk visit - collect lenses for AFM and LB trough
2 wk visit - collect lenses for AFM and LB trough
Exit study
Clinical assessment
Thiswasaprospective,dispensing,singlemasked,crossover, dailywearstudy(Fig.1).TenCLwearers(5MGDand5 non-MGD)participatedinthisstudy,whowerenotthesameas those in the meibum study described above Participants whoworehydrogelorsiliconehydrogelCLonadailywear basis and a monthly/bi-weekly replacement schedule and whoworeCLforatleastfivedaysperweekforaminimum
of10heachdaywereincludedinthestudy.Participantswho worelensesonanextendedwearbasiswereexcludedfrom the study.Participants were categorizedinto MGD (symp-tomaticofdry-eye)andnon-MGD(asymptomaticofdryeye) basedontheirsubjectiveevaluationofsymptomsofdryness (SESOD).48,49 The SESOD isaself-assessment questionnaire thatassessedthesubjects’oculardiscomfortdueto symp-toms of dryness ona 0 -4 scale, ranging from‘‘none’’ to
‘‘severe’’.Participantswhoscored≥2onSESODandhada meibum qualityscoreof>1 ona 0 -3scale, weregrouped
asMGD.Thosewhoscored≤1onSESODandhadameibum qualityscoreof0werenon-MGD
Participants were randomized to wear one of the two lenses(etafilcon Aor balafilconA)bilaterally for thefirst phase(2 weeks)of the study.Duringthe second phase(2 weeks)thelensnotwornonthefirstphasewerewornby
Trang 5Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
theparticipants.Participantsweremaskedtothelenstype
during the study A hydrogen peroxide-based disinfection
system(AlconClearCare,FortWorth,TX)wasdispensedto
studyparticipantsduringbothphasesofthestudy
Theuseofartificialtearsand/orrewettingdropswasnot
permittedduringthestudyforthenon-MGDgroup.However,
theMGDgroupwasallowedtousetheirhabitual artificial
tearsand/or rewettingdrops.Therewereatotalofthree
studyvisits (Fig.1).Each visitwasseparatedby2 weeks
Participantswererandomlyassignedtooneofthetwolens
groups.Theparticipantswereaskedtoweartheirlenseson
a daily wearbasis for a minimum of eighthoursper day
Overallparticipantpreferenceforthelenstypeusedinthe
studywasalsoassessedona0 -100scale
Lens collection and storage
The studylenseswerecollectedat theendofeach phase
(Fig.1).Study lenses werecarefully removed bythe
par-ticipant,withcleanpowder-freenitrilegloves(SemperCare
NitrilePF)attheendofeachtwo-weekphase.Lens
collec-tionwasrandomized,witheithertheleftorrightlensbeing
collectedforanalysiswithAFMorLBtrough.Thesame
ran-domizationwasusedforbothphasestoallowforpair-wise
phasecomparisonsforeachparticipant.Lensesdeemedfor
AFM analysis were placed into a 20mL glass scintillation
vialcontaining2mLofautoclavedPBS.Bluntmetalforceps
wereusedtomanipulatethelensintoan‘‘open’’position
inthe solution.LenseswerescannedwiththeAFMwithin
48h Lenses deemed for LB trough analysis were placed
into empty 20mL scintillation vials with blunt metal
for-ceps,purgedwithnitrogengas, cappedandstoredfrozen
at−80◦C
The Langmuir -Blodgett (LB) microtrough from KSV NIMA
(BiolinScientific,Finland)wasusedfor creatingisotherms
for lipid analysis and for preparation of solid-supported
monolayersamplesofmeibum films.The lipidsolutionsin
organicsolvent werespread atthe water -airinterfaceof
the trough and let equilibrate for a minimum of 10min
to allow for organic solvent evaporation as lipid
equili-bration.Tocollectpressure -areaisotherms,thelipidfilms
werecompressedataspeedof20cm2/minandaminimum
of 3 isotherms were collected for each sample For lipid
filmssupportedonmica,depositionwasdoneataconstant
barrier-controlledcompressionpressureof10mN/manda
consistentdippingspeedof2mm/min
Meibum study
Monolayer samples were created using vertical
deposi-tion with the LB trough A freshly cleaved mica slide
(ruby,ASTMV-2quality;Asheville-SchoonmakerMica,
New-portNews,Virginia)wasplacedinadipperarmofthetrough
andloweredintothesubphase.Meibumsecretionswere
dis-solvedin 1.0mL ofchloroform; concentrations varieddue
todifferencesinamountofmeibumcollectedfrom
partici-pants.Dissolvedmeibumwasdepositedonthesurfaceofthe
LBtroughandlipidswereallowedtospreadandequilibrate
ontheinterfaceforaminimumof10min,beforebeing
com-pressedviathetroughbarrierstoacompressionof10mN/m
Thispressurewasthenheldwhilethemicawasraisedata constantratethroughtheinterface.Aftera10-mindrying periodinair,themonolayersupportedonmicawasaffixed
onaglassmicroscopeslideforAFMimaging
Contact lens study
Lenses worn by study participants were extracted twice using 2.0mL of 2:1 chloroform:methanol These extracts weresubsequently driedwithasoftstreamofinert nitro-gen gas and re-suspended in 2.0mL of chloroform These lipid solutions were then studied using the LB trough
at ambient room temperature (25◦C) to look at their pressure -area isotherms Lenses incubated in an artifi-cial tear solution (ATS) for 2 weeks at 37◦C, containing
a‘‘cocktail’’ of the6 most abundant lipids inthe human tearfilm(cholesterolat0.0018mg/ml,cholesteryloleateat 0.024mg/ml,oleicacidat0.0018mg/ml,oleicacidmethyl esterat0.012mg/ml,phosphatidylcholineat0.0005mg/ml, and triolein at 0.016mg/ml), were also extracted and analyzed using the LB trough pressure -area isotherms A pressure -areaisothermofthe‘‘6-lipidcocktail’’itselfwas alsomeasured for thepurposes ofanothercomparison.In this process, the trough is first thoroughly cleaned with chloform; then, aliquots of the lipid solution in chloro-formwereaddedtotheair -waterinterfaceofthetrough, withMilli-Qultrapurewater(18.2Mcmresistivityat25◦C)
as a subphase, allowed to equilibrate for 10min, and thencompressedviamoveable barrierarmstocollectthe pressure -areaisotherms
TheAtomicForceMicroscopeutilizesasharpprobeto phys-icallyscanacrossthesurfaceofasampleandgivesanimage
ofthetopographicalfeatureswithnanoscaleresolution.For boththemeibumstudysamplesonmicasubstrateandthe
CLstudysamples,NanoworldNCHPointProbeuncoated can-tilevers(Neuchâtel,Switzerland)withaspringconstantof
42N/mandaresonantfrequency of320kHzwereusedto conductscansusingintermittentcontactmode.Imagingwas conductedusingaJPKNanowizardII (JPKInstrumentsAG, Berlin,Germany)atomicforcemicroscope
Meibum study
MeibumfilmsforAFMimagingweredepositedonmicaand glassslidesusingLBdepositionandimagedin airin inter-mittentcontactmode.Thetopographyimagesofsupported lipidfilms were analyzed and processed using JPK image processingsoftware(JPKInstrumentsAG).Allimageswere subjectedtothesameprocessing,namely polynomialline
fitandhistogramlinefit,inordertoimproveimagequality Quantitativeanalysisofsurfacecoverageandroughness val-ueswasperformedusingtheJPKimageprocessingsoftware andGwyddionanalysissoftwareprograms
Contact lens study
Allofthecontrollensesusedinthisstudyhadapower -3.0 dioptresandadiameterof14.0mm.ThebalafilconAlenses hadaradiusof8.6mmandtheetafilconAlenseshadaradius
of 8.7mm Due tothe curvature of the lens, a spherical glasslensholderwascreatedinordertomaintaincurvature
Trang 6Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
ofthesample while doingtheAFMscanning.Lenseswere
scannedinbothliquidandairtoanalyzethedifferencein
imagingtechniquesandtodeterminehowthelenssurface
morphology responded toboth conditions.Imaging
condi-tionsareindicated infigure descriptions.Allimageswere
subjectedtothesameprocessingasthemeibumstudy.20
participant-wornlensesweregatheredintotalforAFM
anal-ysis:10etafilconAand10 balafilconA.Howeveronelens
ofeach material typewasnot abletobe scanneddue to
technicaldifficulties,giving atotalof 18 CLsanalyzed by
AFM
Clinical data analysis was conducted using Statistica 9.1
andp-valueswereobtainedviaanindependentt-test.
Oth-erwise,datais reportedasmean±standard deviation.LB
trough pressure -area isotherms were analyzed and
plot-tedusingMicrosoftExcel2007 StatisticalanalysisonAFM
images was performed on the images in order to obtain
informationonroughnessofthesamplesandtheheightsof
surfacefeatures.Foreachsampleseries,20cross-sections
weretakenandthedatacollectedfromthem:10acrossthe
flat,featurelessareasofthesampleand10acrossthelarge
aggregates(forthe meibummonolayers)or pores(forthe
humanwornlenses)
Results
Ten female participants were enrolled in the study, with
a mean age of 55 years (median 56 years, ranging from
40 to 65 years) For the non-MGD group, 5 participants
were enrolled in the study witha mean age of 53 years
(median 53, ranging from40 to62 years).For the group
withMGD,5participantswereenrolledwithameanageof
58years(median57,rangingfrom61to65years).Themean
OSDI (non-MGD=1±1 vs MGD=17±7; p<0.01), TFBUT
(non-MGD=5.8±1svsMGD=2±1s;p<0.01),corneal
stain-ing (non-MGD=0.14±0.09 vs MGD=5.8±3.63; p<0.01),
qualityofmeibum (non-MGD=0.0±0.0vsMGD=1.2±0.2;
p<0.01)andmeibumexpressibility(non-MGD=0.7±0.4vs
MGD=1.8±0.8;p=0.03)scoreswereallsignificantly
differ-entbetweenthegroups
AFMresultsforthemeibumsamplesinthisstudydidvary
widely,aswould beexpected due togenerallipoidal
dif-ferencesbetween individuals.However,sometrendswere
visibleinthedatacollected
For each participant, several images of the meibum
depositsonmicaweretakenofthesampleatvariousareas
aswellasinvarioussizes,toensureconsistencyinthe
sur-face features observed The common surface features of
the samples collected can be seen in the representative
images illustrated in Fig 2 In general, visual inspection
suggestedthatflattersampleswithrelativelyfew(but
rel-ativelylarge)sphericallipidaggregatesweremorecommon
forthenon-MGDparticipants(Fig.2A).Wherepresent,these
lipid‘‘clusters’’tendedtobelargerinheight,withheights
upto525nm Upon takinga closerlook at thesesamples
(Fig.2B), it can beseen that some multilayers were also
present,from3.0to8.0nminthickness.FortheMGD par-ticipants,alargernumberoflipidaggregatesofvaryingsizes weremoreplentifulthanthatseeninthenon-MGDresults, althoughtheseclusterswerenotaslargeintermsoftheir height (Fig.2C) Images of highermagnification show the presenceofmultilayersaswell,rangingfrom3.0to14nm
inthickness
Inordertonumericallycomparethedifferencesbetween thelipidaggregatesandmultilayersonthesupportedfilms betweentheMGDandnon-MGDresults,averageroughness
(R a)valueswereobtainedtogiveaquantitativemethodof comparison.R aisameasurementofthechangesinheightof thesampleinquestion;inthiscase,wecanusethese rough-nessmeasurementsasawayofdeterminingdifferencesin themeibumsamplesofMGDvsnon-MGDparticipants caus-ingchangesinthesurfacefeaturesofthesamples,whether
itbeduetoamountofmeibum,ratiosoflipids,presenceof differinglipids,interactionsamongthelipidspresent,and
soon.AsseeninTable1,R avaluesacrossthelipid multilay-erswereonaveragefrom0.07to1.11nmforthenon-MGD samples,ascomparedwiththeMGDsamples,wheretheR a
ranged from0.10 to 1.37nm, indicating that the samples fromMGDparticipantshad slightlyhigherR a values Simi-larly,R avaluesweretakenacrossthelipidaggregatesand thesametrendwasobserved:non-MGDparticipantsamples hadR avaluesfrom2.14to13.77nmwhileMGDsampleshad
R avaluesfrom2.91to39.18nm.InadditiontoR a, peak-to-valleyroughness (R t) valueswereobtained, whichgives a measure of thechanges in height of thesample between the minimum valley and maximum peak of the sample,
an indication in this case of the largest accumulations of meibumconstituentsonthesolid-support.These measure-ments,asshowninTable1,followedasimilartrendtothat
oftheR a,whereawiderdistributionwithhigherroughness values wereobserved for MGDsamples than for non-MGD samples
Ten participants were enrolled in this study (8 female,
2 male) The mean age of the participants was 32 years (median 30 years, ranging from 21 to 54 years) For the
CLwearinggroupwithno-MGDgroup,5 participantswere enrolled,withameanageof32years(median30,ranging from21to40years).FortheCLwearinggroupwithMGD,
5 participantswereenrolled withameanage of 33years (median27,rangingfrom23to54years)
Asexpected,theMGDgroupscored significantlyhigher
on the SESOD questionnaire (MGD group=2.60±0.89 vs non-MGDcontrolgroup=0.60±0.55;p<0.01)andmeibum secretion quality score (MGD=1.2±0.2 vs non-MGD con-trolgroup=0.0±0.0;p<0.01).Themajorityofparticipants (90%)preferredetafilconAlensesover balafilconAlenses during the study For each lens, in at least two dif-ferent areas, AFM images were taken at four different sizes (30m×30m, 20m×20m, 10m×10m, and
5m×5m), resulting in at least eight images for each lens Fig.3 displays afew representativesamplesof such images
Balafilcon A lenses worn by MGD participants showed fewer deposits, although they were larger and
Trang 7Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
30
20
10
0
Fast ( µm)
30
10
5
0
5 Fast ( µm)
10
30
20
10
0
Fast ( µm)
30
10
5
0
5 Fast ( µm)
10
(AandB)andMGDparticipants(CandD).Imagesshownarerepresentativeimagesillustratingthecommondifferencesobserved betweenMGDandnon-MGDsampleresults.AandCshowthesampleatawiderscale(30m×30m).FiguresBandDarezoomed
inimages(10m×10m)ofareasfromtheircorrespondinglargerscaleimages(AandBarethesameparticipantandsample;
CandDarethesameparticipantandsample)
distributed unevenly across the surface These deposits
also had an irregular stringy or elongated appearance
In comparison, the non-MGD lenses showed a dusting of
small,circulardepositsthatwereevenlydistributedonthe
lens These observations suggest an irregular deposition
and accumulation of tear film components on the lenses
wornbyMGD participants.Table2displays measurements
of roughness parameters fromthe lens images The
indi-vidual roughness values from the images in Fig 3 are as
follows:Fig.3Ais abalafilconAnon-dryeye lenswithan
average roughness of 3.200nm Fig 3B is a balafilcon A
dryeyelenswithanaveragerounessof1.422nm.Fig.3Cis
anetafilconAnon-dryeye lenswithanaverage roughness
of0.395nm.Fig.3Dis anetafilconAdryeyelenswithan averageroughnessof0.758nm
The surface roughness of balafilcon A lenses worn by MGDparticipants waslowerthanthesurfaceroughness of non-MGD participant worn lenses on average when mea-suredacrossapore,a‘‘flatarea’’onthelensoraflatand porousregion combined Pore depths in the worn balafil-conAlensesweremeasuredandfoundtobeveryvariable
Onaverage,poresin thelenseswornbyMGDparticipants werenotasdeepastheporesin thelenseswornby non-MGD participants Pore widths were also very variable,
Trang 8Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
Table 1 Estimationanalysisforhumanmeibumsamples.Cross-sectionsweretakentogivethreeroughnessvaluesformboth acrossthelargelipidaggregatesaccumulatedatopthemonolayerandacrossthemonolayeritselftodetectsmalldomainsand featuresofthemonolayer
Averageroughness(R a)(nm) Peak-to-valleyroughness(R t)(nm)
Range Average Std.Dev Range Average Std.Dev
Cross sections across ‘‘flat area’’ of the sample
Non-MGD 0.07 -1.11 0.51 0.46 0.42 -4.54 0.62 0.52
Cross sections across large lipid aggregates atop monolayer
MGD 2.91 -39.18 19.21 16.09 11.21 -125.63 21.35 17.30 Non-MGD 2.14 -13.77 10.64 8.16 7.53 -67.17 12.85 9.65
mea-surethesedimensionsontheetafilconAlensesbecausethis
materialisnotporous
Fig.3C and D display AFM images of worn etafilcon A lenses.Thistypeoflensproved tobemuchmoredifficult
toscanthanthebalafilconAlensesastheywerevery frag-ileandtoreeasily.Asaresult,twolenseswereunabletobe
4
2
0
Fast ( µm) 4
4
2
0
2 Fast ( µm) 4
15.73 nm
0 nm
16.04 nm
0 nm
4
2
0
2 Fast ( µm) 4
4
2
0
2 Fast ( µm)
4
3.568 nm
0 nm
7.545 nm
0 nm
partic-ipants,respectively.CandDareetafilconAlenseswornbynon-MGDandMGDparticipants,respectively.Thesearerepresentative imagesshowingthecommonfeaturesoftheselenses.Eachimageshowsa5m×5mareaoftherespectivecontactlens
Trang 9Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
Table 2 Summarystatisticsofroughnessvaluesfromboththe‘‘flat’’areasofthelensimagesaswellasacrossthelenspores
ofbalafilconAandetafilconAlenses.Averageroughnessandpeak-to-valleyroughnessareshown.Allroughnessmeasurements areinnanometers
Averageroughness(R a) Peak-to-valleyroughness(R t)
Range Average Std.Dev Range Average Std.Dev
Balafilcon A cross sections across a ‘‘flat’’ area of the lens
Dryeyelensesimagedinliquid 1.51 -10.20 4.83 2.26 7.84 -33.39 20.62 7.35 Dryeyelensesimagedinair 0.42 -2.67 1.19 0.58 3.15 -14.44 6.55 2.73 Non-dryeyelensesimagedinliquid 0.69 -18.74 6.03 5.10 3.13 -57.95 24.19 15.61 Non-dryeyelensesimagedinair 0.64 -9.00 2.02 1.80 3.75 -39.75 11.01 8.14 Controlinair 0.74 -1.20 0.96 0.16 4.35 -8.00 6.06 1.14 Controlinliquid 1.31 -6.69 3.53 1.56 7.44 -19.78 14.07 4.08
Balafilcon A cross sections across a pore in the lens
Dryeyelensesimagedinliquid 6.71 -16.95 12.20 2.07 24.64 -64.91 44.19 7.78 Dryeyelensesimagedinair 1.14 -5.07 2.69 1.26 5.73 -20.53 11.67 4.48 Non-dryeyelensesimagedinliquid 7.19 -27.60 18.40 5.93 31.79 -109.10 67.83 22.20 Non-dryeyelensesimagedinair 1.76 -6.12 3.68 1.00 9.19 -33.74 15.82 4.44 Controlinair 1.26 -4.32 2.978 0.95 7.40 -18.47 13.64 3.53 Controlinliquid 6.03 -13.61 10.41 2.41 22.20 -48.97 38.48 8.09
Balafilcon A cross sections across a pore and flat area combined
Dryeyelensesimagedinliquid 1.51 -16.95 8.60 4.33 7.84 -64.91 32.60 14.21 Dryeyelensesimagedinair 0.423 -5.07 1.94 1.23 3.15 -20.53 9.11 4.49 Non-dryeyelensesimagedinliquid 0.69 -27.59 12.21 8.31 3.13 -109.10 46.01 29.11 Non-dryeyelensesimagedinair 0.64 -9.00 2.85 1.67 3.75 -39.75 13.42 6.94 Controlinair 0.74 -4.32 1.97 1.23 4.35 -18.47 9.85 4.65 Controlinliquid 1.32 -13.61 6.97 4.10 7.44 -48.97 26.28 7.44
Etafilcon A lenses
Dryeyelensesimagedinliquid 0.15 -2.01 0.72 0.65 0.84 -9.20 3.86 3.04 Dryeyelensesimagedinair 0.24 -2.13 0.63 0.33 1.29 -9.43 3.56 1.65 Non-dryeyelensesimagedinair 0.15 -7.69 1.16 1.70 0.78 -24.48 4.86 5.67 Controlinair 0.13 -0.35 0.20 0.06 0.74 -1.55 1.00 0.19 Controlinliquid 0.37 -1.46 0.82 0.27 1.69 -5.73 3.96 1.18
lenses
Table 3 PoreanalysisforbalafilconAhumanwornlenses
Analysis ofthepores for the balafilcon A lenseswas
per-formed to investigate the presence of lipid accumulation
inoraroundtheedges ofthelenspores.Bothporedepth
(viapeak-to-valleyroughnessmeasurements)andporewidth
weretaken
Poredepth range(nm)
Porewidth range(nm) MGDparticipants 8.00 -64.91 239 -1880
Non-MGDparticipants 9.19 -109.10 220 -1310
Controlinair 7.40 -18.47 200 -1270
Controlinliquid 22.20 -48.97 310 -700
increasedasthesurfaceareadecreased.However,thelipid extractsfroman etafilconAlensincubatedinanartificial tearsolutioncontainingthislipidcocktaildid showa col-lapse,whereas thelipid extractsfrom balafilconAlenses didnot(Fig.4)
Fig 5 contains representative surface pressure -area isothermsofbalafilconAandetafilconAlensextractsworn
bynon-MGDandMGDparticipants.Bothgroupsofisotherms appeartobefairlyfeaturelessastheydonotcollapsebut thesurface pressure continues toincrease asthe surface areaofthetroughdecreases.Thereareafewcharacteristic
‘‘bends’’intheisothermcurvebutitcannotbesaidwhether
ornottherearemoreoftheseintheMGDisothermsorvice versa
Less lipid extract was needed to measure the surface -pressure area isotherms for the etafilcon A materialcomparedtobalafilconA.Also,ahighervolumeof MGDlensextractwasrequiredtoproduceanisotherm on averagecomparedtothenon-MGDextract
Trang 10Please cite this article in press as: Hagedorn S, et al Atomic force microscopy and Langmuir -Blodgett
0
5
10
15
20
25
30
35
40
90 80 70 60 50 40 30 20
10
0
Area (cm2)
In vitro lens lipid extract isotherms
Balafilcon A Etafilcon A
6 lipid cocktail
ofthesixlipidcocktail-basedsamples.Isothermsincludedare
thatofthepuresix lipidcocktail,whichisrepresentative of
theocularlipidssecretedbythemeibomianglands,aswellas
thoseoflensextractsfrombalafilconAandetafilconAlenses
thatwereincubatedinanartificialtearsolutioncontainingthe
sixlipidcocktailforatwoweekperiod
0
5
10
15
20
25
30
35
40
90 80 70 60 50 40 30 20
10
0
Area (cm2)
Pressure-area isotherm curves for lens lipid extracts
10-os etafilcon a dry eye 230 ul 7-os etafilcon a non-dry eye 160 ul 3-od balafilcon a dry eye 20 ul 9-od balafilcon a non-dry eye 20 ul
etafilconAlensextractswornbyMGDandnon-MGDparticipants
fortwoweeks.Thevolumeoflensextractusedtoproducethe
isothermisshownnexttotheparticipantnumber
Discussion
ThispreliminarystudyexploredtheuseofAFMandLB
meth-odstoexaminethedifferencesbetweenCLdeposits,CLlipid
extractsandmeibomianglandsecretionsinbothMGDand
non-MGDparticipants
Forthe meibum study,samples of meibum monolayers
supportedonmicafromboththeMGDandnon-MGD
partic-ipantsdepositedataspecificcompressionpressurechosen
tooptimizeconditions.Recent studieshaveshown thatat
ambientroomtemperature(24◦C),meibumisabletoreach
pressuresofover35mN/m.50 Ingeneral,this
compressibil-ityofmeibummayaidinitsfunctioninpreventingthetear
filmfromevaporating,especiallyinrelationtotheblinking
oftheeye.Uponcompression,lipidsassociatetogetherto
formaggregatesatopthemonolayersample,which allows
themtoenduredecreasesinsurfaceareawithoutdramatic
increasesinpressure.Thisisseeninprotein-lipidmixtures
thataresubjectedtoextremechangesinsurfacearea,like
lungsurfactant.51 Itis possiblethatasimilarcasemaybe
occurringinthemeibumfilms,asmeibumhasbeenshown
to contain a number of proteins.52 -54 However, because meibumisverylipidrich,itisalsopossiblethatthelipids present inmeibum areabletoassociatetogethertoform theselargeaggregatesthatarevisualized.52Someofthese aggregates are likely to be multilayers formed from the amphiphilicphospholipidsandsphingolipids presentin the meibum,suchassphingomyelinandphosphatidylcholine.55
It is alsolikely thatsome of the aggregates wereformed duetothepresenceoftriglyceridesinthemeibum.These lipidshavebeenstudiedinmonomolecularfilmsandfound
to form multilayers atop the monolayer film, with their threehydrophobicfattyacidtailsallowingthemtoforma close-packingaccumulationstructureatopthemonolayerat higherpressures.56 However,inordertospecifically deter-mine the distributionof the various lipids in themeibum film, a method that could differentiate the components wouldneedtobeused
Wechoseacompressionpressureof10mN/mdueinsmall part tolimited amount of meibum sample available from each participant during the extraction process to spread acrossthesubphaseofthetrough,butprimarilytoensure sufficient meibum wasavailable tomaintainthis pressure duringthedepositionpressure
Differencesintrends wereobservedfor the monolayer samplesofmeibumcollectedfromMGDandnon-MGD par-ticipants.Themaintrendsobservedwerethatthemeibum fromMGDparticipantshadslightlyhigherroughnessvalues andawiderdistributionofroughnessvaluesthancompared
to the non-MGD participants These valuescorrespond to what can be visualized in Fig 2, where there are more lipid aggregatespresent inthe meibum from MGD partic-ipants thanthe non-MGD participants, which ledto more features on the surface of the monolayer sample, and thushigherroughnessvalues.However,thelipidaggregates
on thesurface of the monolayers fromMGD participants, though more plentiful, were smaller in height and width thanthosevisualizedonthesurfaceofthemonolayersfrom non-MGDparticipants.This couldpotentiallybeattributed
tochangesinthelipidcompositionorchangesinrespective lipidamountsthatleadstolipidsintheMGDparticipants’ meibum to not combine well together, resulting in more plentifulbuthomogeneoussmalleraggregates.The reason-ing behind this may also be a contributing factor to the instability of the MGD tear film In contrast, samples of the meibum from non-MGD participants’ show fewer but larger aggregates, which is potentially due tothe ability
of thedifferentcomponentsof themeibum beingableto associatetogether,formingfewerbutlargerheterogeneous aggregates
Forthe CL study, the AFMscans and roughness of the participant worn balafilcon A and etafilcon A lenses sug-gest that the non-MGD participant wornlenses contained
amoreuniformspreadofsmallerlipiddepositswithhigher roughnessvaluesthantheMGDlenses.Thismaybebecause thetearfilmstructureofapersonwithoutMGDisrelatively stableandordered,enablingfewerlipidandprotein interac-tionswiththeCLonceinserted.7Incomparison,thelenses fromMGDparticipants showedan irregulardistribution of variablesizeddepositswithlowerroughnessvalues.Those withMGDhavean unstabletearfilmthatishighly suscep-tibletoevaporationduetothecompromised lipidlayer.57