1. Trang chủ
  2. » Giáo án - Bài giảng

Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques

8 14 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Applicability of Retention Modelling in Hydrophilic-Interaction Liquid Chromatography for Algorithmic Optimization Programs with Gradient-Scanning Techniques
Tác giả Bob W.J. Pirok, Stef R.A. Molenaar, Rianne E. van Outersterp, Peter J. Schoenmakers
Trường học University of Amsterdam
Chuyên ngành Analytical Chemistry
Thể loại Research article
Năm xuất bản 2017
Thành phố Amsterdam
Định dạng
Số trang 8
Dung lượng 1,48 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Computer-aided method-development programs require accurate models to describe retention and to make predictions based on a limited number of scouting gradients. The performance of five different retention models for hydrophilic-interaction chromatography (HILIC) is assessed for a wide range of analytes.

Trang 1

j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a

Full length article

a University of Amsterdam, van ‘t Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH, Amsterdam, The Netherlands

b TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands

Article history:

Received 29 September 2017

Received in revised form 9 November 2017

Accepted 10 November 2017

Available online 11 November 2017

Keywords:

Hydrophilic-interaction chromatography

Retention model

Gradient scanning

Method development

Gradient equations

Computer-aidedmethod-developmentprogramsrequireaccuratemodelstodescriberetentionandto makepredictionsbasedonalimitednumberofscoutinggradients.Theperformanceoffivedifferent retentionmodelsforhydrophilic-interactionchromatography(HILIC)isassessedforawiderangeof analytes.Gradient-elutionequationsarepresentedforeachmodel,usingSimpson’sRuletoapproximate theintegralincasenoexactsolutionexists.Formostcompoundclassestheadsorptionmodel,i.e.a linearrelationbetweenthelogarithmoftheretentionfactorandthelogarithmofthecomposition,is foundtoprovidethemostrobustperformance.Predictionaccuraciesdependedonanalyteclass,with peptideretentionbeingpredictedleastaccurately,andonthestationaryphase,withbetterresultsfora diolcolumnthanforanamidecolumn.Thetwo-parameteradsorptionmodelisalsoattractive,because

itcanbeusedwithgoodresultsusingonlytwoscanninggradients.Thismodelisrecommendedas thefirst-choicemodelfordescribingandpredictingHILICretentiondata,becauseofitsaccuracyand linearity.Othermodels(linearsolvent-strengthmodel,mixed-modemodel)shouldonlybeconsidered aftervalidatingtheirapplicabilityinspecificcases

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

1 Introduction

Hydrophilicinteraction chromatography (HILIC) hasbecome

increasinglyimportantfor theanalysisofhighlypolaranalytes,

such as antioxidants [1], sugars (e.g glycomics [2–4]), (plant)

metabolites[5–7],foodstuffs[8],andenvironmentalpollutants[9]

Theexact mechanismofretentioninHILIChasbeenintensively

investigatedanditisthoughttoberathercomplex.Thecurrently

acceptedmechanismisacombinationof(i)partitioningprocesses

oftheanalytesbetweenawater-poororganicmobilephase and

a water-rich layerabsorbed ona polarstationary-phase

mate-rial[10],and(ii)electrostatic interactionsbetweentheanalytes

andthestationary-phasesurface[11].Therefore,HILICcanbestbe

describedasamixed-moderetentionmechanism

∗ Corresponding author at: University of Amsterdam, van ‘t Hoff Institute for

Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH,

Ams-terdam, The Netherlands.

E-mail address: B.W.J.Pirok@uva.nl (B.W.J Pirok).

TodescriberetentioninHILIC,severalretentionmodelshave beeninvestigated.Themodelmostcommonlyusedin reversed-phase LC (RPLC) involves a linear relationship between the logarithmoftheretentionfactor (k)and thevolumefractionof strongsolvent(ϕ) Whenalinear gradientis usedin RPLC this resultsinso-calledlinear-solvent-strengthconditions[12].Already

in1979,LSSconditionshavebeenstudiedanddescribedindetailby Snyderetal.[12]andequationswerealsoderivedforsituationsin whichanalyteselutebeforethegradientcommencesorafterithas beencompleted[12,13].However,duetothemixed-mode reten-tionmechanism,thislinearmodelmaybelesssuitabletoaccurately modelretentioninHILIC

Todescriberetentionmoreaccuratelyacrossawiderϕ-range, Schoenmakersetal.introducedaquadraticmodel[13],including relationsfortheretentionfactorforanalyteselutingwithinand afteragradient.However,anerrorfunctionwasrequiredtoallow partialintegrationofthegradientequation.Thisisanimpractical aspectoftherelationship.Moreover,themodelmayshow devia-tionsfromtherealvalueswhenpredictingoutsidethescanning range.Anempiricalmodel proposedbyNeueand Kuss circum-ventedtheintegrationproblems,allowinganalyticalexpressionsto

https://doi.org/10.1016/j.chroma.2017.11.017

0021-9673/© 2017 The Author(s) Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

reten-tionmodelbasedonsurfaceadsorptionhasalsobeenproposedfor

HILIC,predictingretentionacrossnarrowrangesofwater

concen-trationsintheeluent.Toaccountfortheobservedmixed-mode

behaviourfoundinHILIC,Jinetal.introducedathree-parameter

model[15],whichwasfoundtopreciselydescriberetentionfactors

inisocraticmode[16].However,similartothequadraticmodel,

integrationof thecorresponding gradientequation was

signifi-cantlycomplicated,involvingagammafunctionandpotentially

yieldingcomplexnumbers

For efficient method development, an underlying accurate

descriptionoftheretentionmechanismiscrucial.Because

gradi-entelutionisanessentialtoolforanalysingorscanningsamples,

accuratedescription of gradient-elution patterns is also

essen-tial.Computer-aided-optimizationtools,suchasDrylab[17] for

1D-LC, or PIOTR [18] for 1D and 2D-LC, utilize the concept of

so-called “scouting” or “scanning” runs to establish retention

parameters[19],fromwhichtheoptimalconditionsandthe

opti-malchromatogramcanbepredicted.MethoddevelopmentinHILIC

followingtheseprincipleshasextensivelybeenstudiedbyTyteca

etal.[20,21].However,thecurrentlyemployedretentionmodels

forHILICdonotallowaccuratepredictionofretentiontimesof

ana-lyteselutingduringorafterthecompletionofgradientsbasedona

verylimitednumberofscoutingmeasurements.Thishampersthe

applicationofsuchoptimizationtoolsforHILIC

Inthiswork,wepresenttheresultsofanevaluationstudyof

eachofthefiveabove-listedmodelsforpredictingretentiontimes

ingradient-elutionHILICbasedonalimitednumberofscouting

runsforawiderangeofapplications.First,theequationforeach

retentionmodel is addressedinthecontext ofgradient-elution

chromatography.WeuseSimpson’sRule[22]toapproximatethe

integrationofresultinggradientequationswhenanexactsolution

doesnotexist,i.e.forthequadraticandmixed-modemodels.The

performanceofeachofthesemodelsincomputer-aided

method-developmentprogramsisassessed

2 Theory

Inthecasethatasoluteelutesbeforethestartofthegradient,

theretentiontime(tR,before)canbecalculatedfrom

tR,before=t0(1+kinit) (1)

wherekinitdepictstheretentionfactoratthestartofthegradient

andt0thecolumndeadtime.Thegeneralequationoflinear

gradi-entsallowscalculationoftheretentiontimeifacompoundelutes

duringthegradient

1

B

ϕ init +B(t R −)

ϕ init

k (ϕ)=t0−tinit+tD

kinit

(2)

Inthisequationk (ϕ) istheretentionmodel,denotingthevariation

oftheretentionfactorkwiththecompositionparameter␸.The

changeinϕasafunctionoftime(i.e.theslopeofthegradient)is

depictedBϕ=ϕinit+Bt)and␶isthesumofthesystemdwelltime

tD,thewaitingtimebeforethegradientisprogrammedtostarttinit,

andt0(≈tD+tinit+t0).Forusefulapplicationofgradient-elution

retentionpredictionmodelsinrealcases,it isessentialthatthe

retentiontimecannotonlybeestablishediftheanalyteelutes

dur-ingthegradient,butalsoifitelutesafterthegradientiscompleted

Inthiscase,theretentionisobtainedbyintegratingtheretention

modelinthefollowingequation

1

B

ϕfinal

ϕinit

k (␸)+tR−−tG

kfinal =t0−tinit+tD

kinit

(3)

Here,tGrepresentsthegradienttime.Theapplicationofsomeof theproposedHILICretentionmodelsiscomplicated,becausethe integralsinEqs.(2)and(3)cannotbeanalyticallysolved.The appli-cationofeachoftheHILICmodelsforgradient-elutionseparations

isthemaintopicofthispaperandthiswillbedescribedindetail

inthefollowingsections

2.1 Exponentialmodel

Intheexponentialmodel(Eq.(4)),k0accountsforthe extrap-olatedretentionfactorforϕ=0andSdenotesthechangeinthe retentionfactorwithincreasingmobilephasestrength

Thisequationisoftenreferredtoasthelinear-solvent-strength (LSS)equations,becauseitcorrespondstoLSSconditionsin com-binationwithlineargradients(ϕ=ϕinit+Bt).Schoenmakersetal derivedequationsforacompoundelutingduring(tR,gradient)and after(tR,after)thegradient[13]

tR,gradient= 1

SBln



1+SB·kinit



t0−tinit+tD

kinit



tR,after=kfinal



t0−tD+tinit

kinit



BS



1−kfinal

kinit



Here,kfinalrepresentstheretentionfactorattheendofthegradient andtGthedurationofthegradient

2.2 Neue-Kussempiricalmodel TheempiricalmodelintroducedbyNeueandKuss[14]isgiven by

lnk=lnk0+2ln (1+S2ϕ) −1+S1Sϕ2ϕ (7) wherethecoefficientsS1andS2representtheslopeandcurvature

oftheequation,respectively.Integrationofthegradientequation yields

tR,gradient= lnF

B(S2−S1lnF)−ϕinit

withFdefinedas

F=S2Bk0



t0−tinit−tD

kinit



Similarly,introducingEq.(7)intoEq.(3)andrewritingyields

tR,after=kfinal



t0−tinit+tD

kinit

+S2Bk0(e1 +S1ϕinitS2ϕinit −e1 +S1ϕfinalS2ϕfinal ))+tG+ (10)

2.3 Adsorptionmodel Theadsorptionmodelisbasedonconfinedsurfaceadsorption

asusedinnormal-phasechromatographyandisgivenby

wherendepictstheratioofsurfaceareasoccupiedbyawateranda solutemolecule[16].Intheeventsthatthecompoundelutesduring

orafterthegradientretentioncanbecalculatedfrom[23]

tR,gradient=



k0



t0−tinit +tD

k init



B (n+1)+ϕn+1init

 1 n+1 B

−ϕinit

Trang 3



t0−tinit+tD

kinit



− kfinal

Bk0(n+1)

2.4 Mixed-modemodel

Themixed-modeaspectofHILICledJinetal.toproposea

tai-loredmodel[15]

whereS1issaidtoaccountfortheinteractionofsoluteswiththe

stationaryphaseandS2fortheinteractionofsoluteswithsolvents

Whileseeminglyattractivebecauseofitsabilitytoaccountforthe

mixed-modecharacterofHILICretention,therelationdoesposea

practicalproblemuponintegrationofthegradientequation

ThecalculationoftheretentiontimeusingEq.(14),requiresa

gammafunctionandmaypossiblyresultincomplexnumbers.To

circumventthis,weapplySimpsons’Rule[22]toapproximatethe

integral(Eq.(15))

Simpsons

ϕ final +B(tR,gradient−)

ϕ init

eS1 ϕ·eS2dϕ

=Bk0



t0−tinit+tD

kinit



(15)

Thisrule divides theintegral over a function, f,in ourcase

f (ϕ) =eS 1 ϕ·eS 2 inmsegmentsofwidthϕ.Subsequently,each

segmentisapproximatedbya solvablequadratic equationsuch

that,inessence,thecomplexintegral isreplacedbymsolvable

quadraticequations(Eq.(16))

ϕfinal

ϕ init

f (ϕ) dϕ≈ϕ3 

f (ϕinit)+4f

1

mϕ+ϕinit



+2f2

mϕ+ϕinit



+ +2f



m−2

m ϕ−ϕinit



+4fm−1

m ϕ+ϕinit



+f (ϕfinal)



(16)

Ofcourse,theapproximationisaccompaniedbyanerror.With

theSimpsons’Rule,themaximumerrordependsonmandcanbe

calculatedfrom

|E|≤D(ϕfinal−ϕinit)5

whereDrepresentsthemaximumvalueofthefourthderivativeof

theretentionmodelintheintegrationrangefromϕinittoϕfinal.In

thisstudy,wesettheacceptablecalculationerrorto0.001,which

ismuchsmallerthanthetypicalexperimentalerror.Rewritingthe

equationyieldsm≥4

|f 4 (ϕ x ) · ϕ 5

0.18 |(18)

Inthecaseofthemixed-modemodel,ϕxequalsϕinit.Likewise,

themixed-moderetentionmodelcanbeappliedinconjunction

withEq.(3),resultingin

tR,after=kfinal



t0−tinit+tD

kinit − 1

Bk0

Simpsons

ϕfinal

ϕ

eS 1 ϕ·eS 2dϕ

2.5 Quadraticmodel

Incomparisonwiththeexponential(“LSS”)model,thequadratic modeloffersamoreflexiblesolutionacrossabroaderrangeofthe volumefractionofthestrongsolvent.Retentionisgivenby

WhereS1andS2 representtheinfluencesofthevolumefraction

ofstrongsolvent.Similartothemixed-modemodel,integrationof thegradient-elutionequationiscomplex.Effectively,thegradient equationsbecome

Simpsons

ϕ final +B(tR,gradient −tG−)

ϕ init

eS 1 ϕ·eS 2 ϕ 2

=Bk0



t0−tinit+tD

kinit



(21)

tR,after=kfinal



t0−tinit+tD

kinit − 1

Bk0

Simpsons

ϕfinal

ϕ init

eS 1 ϕ·eS 2 ϕ 2

ForcalculatingthenumberofpartitionsmfortheSimpson’s approximationfrom(Eq.(18)),]zϕxnowequalsϕfinal,becausethe fourthderivativeislargestatthefinalsolventstrength

3 Experimental

3.1 Chemicals Aqueoussolutionswerepreparedusingdeionizedwater(Arium 611UV; Satorius, Germany; R=18.2 M cm) Acetonitrile (ACN, LC–MS grade)wasobtained fromAvantor Performance Chemi-cals(Deventer,TheNetherlands).Ammoniumformate,formicacid (reagentgrade,≥95%)andthepeptidemix(HPLCpeptidestandard mixture,H2016)wereobtainedfromSigma-Aldrich(Darmstadt, Germany).Theearl-greyteawasobtainedfromMaasInternational (Eindhoven,TheNetherlands).Thedyesusedinthisstudywere authenticdyestuffsobtainedfromthereferencecollectionofthe CulturalHeritageAgencyoftheNetherlands(RCE,Amsterdam,The Netherlands)

3.2 Instrumental AllexperimentswerecarriedoutonanAgilent1100LC sys-temequippedwithaquaternarypump(G1311A),anautosampler (G1313A),acolumnoven(G1316A)anda1290Infinitydiode-array detector(G4212A)(Agilent,Waldbronn,Germany).Infrontofthe column,anAgilent1290InfinityIn-LineFilter(G5067-4638)was installedtoprotectthecolumn.Thedwellvolumewas approxi-mately1.1mL.Theinjectorneedlewassettodrawandejectata speedof10␮L·min−1 withtwosecondsequilibrationtime. Two

columnswereused,aWatersAcquityBEHAmide(150×2.1mm i.d.,1.7-␮mparticles,130-Åporesize;Waters,Milford,MA,USA) andaPhenomenexLunaHILICcolumn(50×3mm,3␮m,200Å; Phenomenex,Torrance,CA,USA),furtherreferredtoasdiolcolumn 3.3 Procedures

3.3.1 Analyticalmethods The mobile phase consisted of acetonitrile/buffer[v/v] 97:3 (MobilephaseA)andacetonitrile/buffer[v/v]1:1(Mobilephase

Trang 4

B).Thebufferwas10mMammoniumformate atpH 3 Forall

experimentsrecordedontheamidecolumn,fivedifferentscouting

gradientprogramswereused.Allgradientsstartedfrom0.0until

0.5minisocraticat100%A,followedbyalineargradientfrom100%

Ato100%Bin10(GradientA1),17(GradientA2),30(GradientA3),

52(GradientA4)and90(GradientA5)minutes.Inallcases,100%

Bwasmaintainedfor2min,afterwhichalineargradientof1min

broughtthemobilephasebacktotheinitialcompositionof100%

A,whichwasmaintainedfor20mintothoroughlyre-equilibrate

thecolumn.Theflowratewas0.25mLmin−1

Fortheexperimentscarriedoutonthediolcolumn,thefive

differentscoutgradientseachstartedwith0.0–0.5minisocraticat

100%A,followedbyalineargradientfrom100%A–100%Bin0.67

(GradientD1),1.33(GradientD2),2.0(GradientD3),4.0(Gradient

D4)and6.0(GradientD5)minutes.Theflowratewas1.0mLmin−1

3.3.2 Samplepreparation

Thepeptidemixwasusedataconcentrationof1000ppmin

deionizedwater,andwasdilutedfivetimeswithACNbefore

anal-ysis.Theinjectionvolumewas5␮L

Themetaboliteswereindividuallypreparedasstocksolutions

inACN/waterwithratios(varyingbetween9:1or8:2[v/v])and

resultingconcentrationsdependingonthesolubilityofeach

com-pound (see Supplementary Material section S-1) For analysis,

mixturesofsevenoreightmetaboliteswerepreparedwith

effec-tivemetaboliteconcentrationsinthesemixturesbetween100and

500ppm.Theinjectionvolumeofeachmixturewas1␮L.Thepeaks

inthechromatogramswereidentifiedusingindividualinjections,

clearlydistinguishablepeakpatternsandUV–visspectra

Thedyeswerepreparedasindividualstocksolutionsof

approx-imately5000ppminwater/MeOH(1:1)[v/v].Mixturesof20dyes

werepreparedandtheresultingsolutionwasdilutedfourtimesin

ACN.Themixtureswereinjectedatavolumeof3␮Lwitheffective

individualdyeconcentrationsofapproximately25ppm.Thepeaks

inthechromatogramswereidentifiedusingtheUV–visspectra

For the preparation of the earl-grey-tea sample, 200mL of

deionizedwaterwasheateduntiltheboilingpointwasreached.The

heatingwasturnedoffandtheearl-grey-teabagwassubmergedin

thewaterfor5min.Aftercooling,theresultingsolutionwasdiluted

fivetimeswithACNpriortoanalysis.Theinjectionvolumewas

5␮L

4 Results and discussion

4.1 Goodness-of-fit

ToestablishagoodrepresentationofHILICbehaviour,asetof

57analyteswascompiledcomprisingorganicacids,peptides,

syn-theticandnaturaldyesandcomponentsfoundinblacktea(Table1)

Thesetmainlycomprisesacidic, basic,zwitterionicand neutral

compoundswithvaryingpolarityand,inmostcases,aromatic

func-tionality.Theretentiontimesforallanalytesontheamidecolumn

wererecordedwithfivedifferentgradientprograms(see

Exper-imentalsection, gradientsA1-A5) Using theobtainedretention

times(see SupplementaryMaterialsection S-2for allretention

time data), allretention parameters were determinedfor each

retentionmodelbyusingthenonlinear-programming-solver

fmin-searchfunctionofMATLABtofittheretentionmodeltothedata

Theresultingretentionparameters aredisplayedinTable1.For

mostanalytes,reasonablevalueswerefound.Peptidecomponent

1exhibitednoretentionandthuswasexcludedfromthisstudy

Toassess theability of thedifferentmodels todescribethe

retentionbehaviour,theAkaikeInformationCriterion(AIC)[24]

wasused.Thiscriterionprovidesameasureforthemean-squared

errorindescribingtheretentionbehaviourbasedoninformation

theoryanditcanberegardedasagoodness-of-fitindicator.The cri-terionhasbeenusedbeforetostudyretentionbehaviourinHILIC [16]andpartitioncoefficients[25].OneattractivefeatureoftheAIC criterionisthatitallowscomparisonofmodelswithdifferent num-bersofterms.Forexample,athree-parametermodelisexpected

todescribethedatabetterthanatwo-parametermodel.TheAIC criterionaccountsforthisbypenalizingthemodelforeach addi-tionallyemployedparameter,allowinganunbiasedcomparison ForcalculationtheAIC,thenumberofparameters,p,thenumber

ofexperiments,n,andthesum-of-squareserror(SSE)fromthefit

oftheretentionmodelareused

AIC=2p+n



In

2SSE

n



+1



(23) Table1liststheAICvaluesobtained.LowerAICvaluesgenerally indicateabetterdescriptionoftheretentionbehaviour.Generally, theadsorptionand Neue-KussmodelsshowfavourableAIC val-ues.InthecaseoftheNeue-Kussmodel,thisisinagreementwith previousstudies[16].ThisisalsoreflectedinFig.1,wherethe num-beroffoundcompoundswithagivenAICvaluearegroupedina histogramperretentionmodel.ItcanbeseenthattheLSSmodel performspoorlyinmostcasesandthatboththemixed-modeand quadraticmodelsarenotrobustacrosstherangeofcompounds Conversely,theplotsuggeststhattheadsorptionandNeue-Kuss modelsperformmorereliably,inparticularforthemetabolitesand dyes(seeSupplementaryMaterialsectionS-3forhistogramsper classofanalytes)

4.2 Predictionerrors Withthisinsight,theabilityofthemodelstoreliablypredict retentiontimesbasedonasmallernumberofgradientswasstudied

toallowautomaticgradientoptimization.Tosimulatesucha situa-tion,theretentiontimesfromgradientsA2andA4wereexcluded, andtheretentionparametersweredeterminedoncemoreusing exclusivelythedatafromgradientsA1,A3andA5.Theobtained retentionparameterswereusedtopredicttheretentiontimesfor gradientsA2andA4

TheresultsareplottedinFig.2Afortheamidecolumn,where theerrorsinpredictionoftheretentiontimesofallanalytesin gra-dientA2arereflectedbythesolidbarsandthedashedbarsreflect thepredictionerrorsforgradientA4.Mostmodelsperformvery similarly,withanaveragepredictionerrorofapproximately2%for retentiontimesofgradientA2and2.5%forretentiontimesof gradi-entA4.Asignificantdeviationofthisimpressionistheperformance

oftheNeue-Kussmodel,whichissurprisingbecauseofthelowAIC valuesfoundforthismodel.Thiscanbeexplainedbyrealizingthat thisisanempiricalmodelnowusingjustthreepoints(A1,A3and A5)insteadofallfivesuch,wasthecaseforFig.1.Toinvestigate

towhichextenttheobservationsobtainedthusfaralsopertainto otherstationaryphases,theretentiontimesfor17oftheanalytes (peptidesandmetabolites)werealsorecordedonacross-linked diolcolumn,usingasimilarsetofscanninggradients(see Sup-plementaryMaterialsectionS-4fortheobtainedretentiontimes, determinedretentionparametersandthecalculatedAICvalues;see Section3.3.1forgradientprogramsandconditions).Again,using exclusivelydatafromgradientsD1,D3andD5,theretentiontimes

ofgradientD2andD4werepredictedandthepredictionerrors areshowninFig.2B.Interestingly,thepredictionerrorsacrossthe rangeofmodelsismuchbetterwith,withpredictionerrorvaluesof approximately0.5%forD2and1.0%forD4.Noteworthyis,however, thedramaticperformanceoftheNeue-Kussmodelforwhichthe box-and-whiskerplotsareoff-scale.Thelowerpredictionerrors suggestamore-regularbehaviourofthediolcolumn.Itisworthto pointoutthattheobtainedretentionfactorsforbothcolumnswere rathersimilar.Toruleoutthatthissignificantlybetterperformance

Trang 5

Table 1

Overview of determined retention parameters and calculated AIC values for all 57 analytes and five studied retention models based on five scanning gradients.

tea component 1 3.322 18.069 7.386 −2.217 0.708 1.564 5.225 3.325 −18.253 1.952 9.400 −2.373 1.604 2.940 7.430 249.896 19.696 0.578 tea component 2 3.781 18.941 8.570 −2.790 0.000 1.940 5.768 3.765 −18.717 0.165 10.719 −2.790 1.940 3.767 9.177 282.120 18.957 −0.045 tea component 3 3.975 15.981 6.959 −2.290 0.006 1.951 2.875 3.981 −16.211 1.880 8.983 −2.300 1.955 0.870 6.379 96.118 7.975 1.096 tea component 4 4.830 20.493 9.618 −3.726 0.001 2.801 7.156 7.831 −62.722 133.254 −5.245 −3.729 2.802 5.156 8.452 121.672 7.762 5.553 tea component 5 4.604 17.599 11.171 −2.867 0.088 2.456 8.560 8.625 −72.020 164.111 −3.301 −2.930 2.482 6.518 8.557 132.038 8.858 5.938 tea component 6 5.251 13.292 15.366 −2.011 0.000 2.753 13.394 8.272 −40.755 56.057 7.373 −2.008 2.752 11.394 5.297 14.315 0.160 17.142 nicotinic acid 2.245 11.175 5.807 −0.699 0.000 0.764 5.681 2.296 −12.574 3.847 7.781 −0.693 0.763 3.687 4.871 239.184 26.905 2.576 benzyltrimethylammonium 2.626 12.234 2.614 −0.991 0.000 0.977 −2.923 2.637 −12.644 3.064 4.402 −0.991 0.977 −4.921 4.403 125.560 14.849 −8.292 adenine 2.746 10.943 4.915 −0.708 0.143 0.956 0.966 2.784 −11.849 3.511 6.654 −0.771 0.975 −1.172 4.139 88.312 10.965 −0.413 hypoxanthine 2.731 10.730 8.425 −0.709 0.000 0.953 5.485 2.781 −11.851 3.505 10.254 −0.709 0.953 3.488 5.527 187.602 19.457 −3.392 adenosine 2.783 10.090 4.831 −0.559 0.095 0.939 0.812 2.809 −10.809 3.707 6.420 −0.598 0.950 −1.231 3.773 61.007 8.018 0.743 benzylamine 3.064 12.556 9.744 −1.170 0.000 1.207 6.508 3.069 −12.842 2.479 11.619 −1.173 1.208 4.503 7.528 278.750 22.807 −3.007 tyramine component 1 * 3.228 12.835 7.439 −1.307 0.002 1.321 2.110 3.965 −29.081 68.844 1.422 −1.304 1.319 0.097 5.562 120.642 11.979 −1.056

* Two well−separated peaks were systematically observed for tyramine.

** Excluded from study due to lack of retention.

Trang 6

Fig 1. Quality of fit of 56 retained analytes based on the obtained AIC values for each retention model The analytes were classified within distinct ranges of AIC values for clarity See Supplementary Material section S-3 for quality-of-fit histograms per analyte class.

Fig 2. Box-and-whisker plot showing the errors of prediction for (A) 56 analytes on the amide column, (B) 17 analytes on the diol column (C) 17 analytes on the amide and diol column For each column/model combination a plot is provided for the prediction errors of both the second and fourth gradient (A2 and A4 for amide and D2 and D4 for the diol) Plot C reflects results exclusively for gradient 2 for both columns Note the different scales on the y-axes.

ofspecificmodelsiscausedbytheabsenceofthedyesand/ortea

componentsinthedataset,theplotshownasFig.2 compares

exclusivelythepredictionerrorsforthe17selectedanalytes.The

observedtrendssupportthosefoundinFigs.2Aand2B

4.3 Repeatability

Tostudytherobustnessoffittingtheretentionparametersand predictingretentiontimes,tenanalyteswereselectedand

Trang 7

mea-Fig 3.Retention curves of 10 selected analytes for the (A): LSS, (B) mixed-mode, (C) quadratic, (D) adsorption and (E) Neue-Kuss models Each curve represents the average

of five sets of retention parameters derived from five sets of gradient retention data The error bars shown represent the uncertainty.

suredfivetimeswithallfivegradientsontheamidecolumn.The

resultingretentioncurvesareshowninFig.3.Theerrorbarssignify

thespreadbasedonthefivedeterminations.Narrowspreadsinthe

retentioncurveswereobservedfortheLSSandmixed-mode

mod-els,butespeciallyfortheadsorptionmodel.Thespreadwaslarger

foranumberofcomponentswiththeNeue-Kussmodel,despite

theuseoffivedatapointsforfitting,anditwasdramaticforthe

quadraticmodel

Onetrendthatcanbeobservedisthatforspecific(mostly

early-eluting)analytesthespreadislargertowardshigherfractionsof

water.ThetypicalHILICconditionsmaynolongerbeapplicablein

thisrange.Earlier-elutingcompoundsaregenerallymoredifficult

tofitwiththerelativelylimitedgradientrangeusedforscouting.To

studytheinfluenceofthenumberofscanninggradientsontheerror

inprediction,retentionparametersweredeterminedforeach

pos-siblecombinationofgradientswherethepredictedgradientwould

fallwithinthescanningrange.Forexample,gradientsA1,A2and

A4couldbecombinedtopredictA3asthelatterfallswithinthe scanningrange,whereasthiswasnotthecaseforpredicting gra-dientA4fromgradientsA1,A2andA3.Theresultsareshownin Fig.4,withtheplotshowingthepredictionerrorsforall56retained analytesplottedagainstthenumberofusedscanninggradients Notethatthemixed-mode,quadraticandNeue-Kussmodelswere notinvestigatedfortheusewithtwoscanninggradientsasthey arethree-parametermodels.Notsurprisingly,alargernumberof scanninggradientsimprovestheaccuracyofthepredictions How-ever,wecanseethatforsomemodelsthistrendismoresignificant thanforotherones.Usingfourscanninggradientsinsteadoftwo providesjustminorimprovementsinpredictionaccuracyforthe adsorptionmodel,whichappearstoperformsolidlyfortheamide column.Itshouldalsobenotedthattheeffectofadditives,which havebeenshowntoinfluencethetypeofinteractionsinHILIC,have notbeenevaluatedhere[26]

Trang 8

Fig 4.Plot showcasing the mean error in prediction for all 56 retained analytes as a

function of the number of scanning gradients used To establish this plot, all possible

combinations of scanning gradients (A1–A5) were used with the restriction that the

predicted gradient must fall within the scanning range.

5 Concluding remarks

Wehaveinvestigatedthequality-of-fitandprediction

accura-ciesforfiveretentionmodelsandawidearrayofcompoundsfrom

differentclasses.Formostcompoundclasses,theadsorptionmodel

providesthemostrobustperformancein termsof itsabilityto

describeandaccuratelypredictHILICretentionbasedonalimited

numberofscanninggradients.Predictionaccuracieswere

gener-allybetterforadiolcolumnthanforanamidecolumn,withthe

exceptionoftheNeue-Kussmodelwhichperformedpoorlywhen

usingthreescoutingrunsoneithercolumn

Whiletheadsorptionmodelwasfoundtoperformrobustlyfor

mostoftheinvestigatedanalytes,thedatasuggestastrongeffect

ofthecombinationofanalyteclassandstationary-phasechemistry

onmodelperformance.Thetwo-parametermodelisalsoattractive,

becauseitcanbeusedwithgoodresultsusingonlytwoscanning

gradients.We recommendthattheadsorptionmodelshouldbe

thefirst-choicemodelfordescribingandpredictingHILICretention

data,unlessdataareavailabletodemonstratethatothermodels

(“LSS”model,mixed-modemodel)performadequatelyinspecific

situations.Basedonthepresentdata,wecannotrecommendthe

quadraticandNeue-KussmodelsforuseinHILIC

Acknowledgement

TheMANIACprojectisfundedbytheNetherlandsOrganisation

forScientificResearch(NWO)intheframeworkofthe

Program-maticTechnology AreaPTA-COAST3of theFundNewChemical

Innovations(Project053.21.113).AgilentTechnologiesis

acknowl-edgedforsupportingthiswork.TheDutchInstituteforCultural

Heritage(RCE)iskindlyacknowledgedforprovidingtheaged

syn-theticandnaturaldyesamples

Appendix A Supplementary data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttps://doi.org/10.1016/j.chroma.2017.11

017

References

[1] K.M Kalili, S De Smet, T Van Hoeylandt, F Lynen, A De Villiers,

Comprehensive two-dimensional liquid chromatography coupled to the ABTS

radical scavenging assay: a powerful method for the analysis of phenolic

antioxidants, Anal Bioanal Chem 406 (2014) 4233–4242, http://dx.doi.org/

10.1007/s00216-014-7847-z

[2] M Wuhrer, A.R de Boer, A.M Deelder, Structural glycomics using hydrophilic

interaction chromatography (HILIC) with mass spectrometry, Mass Spectrom.

Rev 28 (2009) 192–206, http://dx.doi.org/10.1002/mas.20195

[3] L.R Ruhaak, C Huhn, W.-J Waterreus, A.R de Boer, C Neus ¨uss, C.H Hokke,

et al., Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins, Anal Chem 80 (2008) 6119–6126, http://dx.doi.org/10.1021/ ac800630x

[4] G Zauner, A.M Deelder, M Wuhrer, Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics, Electrophoresis 32 (2011) 3456–3466, http://dx.doi.org/10.1002/elps.

201100247 [5] T Zhang, D.J Creek, M.P Barrett, G Blackburn, D.G Watson, Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with orbitrap mass spectrometry for metabolomic studies of human urine, Anal Chem 84 (2012) 1994–2001, http://dx.doi.org/ 10.1021/ac2030738

[6] S.U Bajad, W Lu, E.H Kimball, J Yuan, C Peterson, J.D Rabinowitz, Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry, J Chromatogr A

1125 (2006) 76–88, http://dx.doi.org/10.1016/j.chroma.2006.05.019 [7] V.V Tolstikov, O Fiehn, Regular article analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry, Anal Biochem 301 (2002) 298–307,

http://dx.doi.org/10.1006/abio.2001.5513 [8] J Bernal, A.M Ares, J Pól, S.K Wiedmer, Hydrophilic interaction liquid chromatography in food analysis, J Chromatogr A 1218 (2011) 7438–7452,

http://dx.doi.org/10.1016/j.chroma.2011.05.004 [9] A.L.N van Nuijs, I Tarcomnicu, A Covaci, Application of hydrophilic interaction chromatography for the analysis of polar contaminants in food and environmental samples, J Chromatogr A 1218 (2011) 5964–5974, http:// dx.doi.org/10.1016/j.chroma.2011.01.075

[10] A.J Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J Chromatogr A 499 (1990) 177–196, http://dx.doi.org/10.1016/S0021-9673(00)96972-3 [11] P Hemström, K Irgum, Hydrophilic interaction chromatography, J Sep Sci.

29 (2006) 1784–1821, http://dx.doi.org/10.1002/jssc.200600199 [12] L.R Snyder, J.W Dolan, J.R Gant, Gradient elution in high-performance liquid chromatography, J Chromatogr A 165 (1979) 3–30, http://dx.doi.org/10 1016/S0021-9673(00)85726-X

[13] P.J Schoenmakers, H a H Billiet, R Tijssen, L Degalan, Gradient selection in reversed-Phase liquid-Chromatography, J Chromatogr 149 (1978) 519–537,

http://dx.doi.org/10.1016/s0021-9673(00)81008-0 [14] U.D Neue, H.J Kuss, Improved reversed-phase gradient retention modeling, J Chromatogr A 1217 (2010) 3794–3803, http://dx.doi.org/10.1016/j.chroma 2010.04.023

[15] G Jin, Z Guo, F Zhang, X Xue, Y Jin, X Liang, Study on the retention equation

in hydrophilic interaction liquid chromatography, Talanta 76 (2008) 522–527,

http://dx.doi.org/10.1016/j.talanta.2008.03.042 [16] P ˇ Cesla, N Va ˇ nková, J Kˇrenková, J Fischer, Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides, J Chromatogr A 2016 (1438) 179–188, http://dx.doi.org/10.1016/j.chroma.2016.02.032 [17] J.W Dolan, D.C Lommen, L.R Snyder, Drylab®computer simulation for high-performance liquid chromatographic method development, J.

Chromatogr A 485 (1989) 91–112, http://dx.doi.org/10.1016/S0021-9673(01)89134-2

[18] B.W.J Pirok, S Pous-Torres, C Ortiz-Bolsico, G Vivó-Truyols, P.J.

Schoenmakers, Program for the interpretive optimization of two-dimensional resolution, J Chromatogr A 2016 (1450) 29–37 ((Accessed 26) May 2016)

http://www.sciencedirect.com/science/article/pii/S0021967316305039 [19] P.J Schoenmakers, Á Bartha, H.A.H Billiet, Gradien elution methods for predicting isocratic conditions, J Chromatogr A 550 (1991) 425–447, http:// dx.doi.org/10.1016/S0021-9673(01)88554-X

[20] E Tyteca, D Guillarme, G Desmet, Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: separation

of nucleobases and nucleosides, J Chromatogr A 1368 (2014) 125–131,

http://dx.doi.org/10.1016/j.chroma.2014.09.065 [21] E Tyteca, A Périat, S Rudaz, G Desmet, D Guillarme, Retention modeling and method development in hydrophilic interaction chromatography, J Chromatogr A 1337 (2014) 116–127, http://dx.doi.org/10.1016/j.chroma 2014.02.032

[22] E Süli, D.F Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003, http://dx.doi.org/10.1017/

CBO9780511801181 [23] P Jandera, J Churáˇcek, Gradient elution in liquid chromatography II, J Chromatogr A 91 (1974) 223–235, http://dx.doi.org/10.1016/S0021-9673(01)97902-6

[24] H Akaike, A new look at the statistical model identification, IEEE Trans Automat Contr 19 (1974) 716–723, http://dx.doi.org/10.1109/TAC.1974.

1100705 [25] M.H Abraham, W.E Acree, A.J Leo, D Hoekman, J.E Cavanaugh, Water–Solvent partition coefficients and  log P values as predictors for Blood?Brain distribution; application of the akaike information criterion, J Pharm Sci 99 (2010) 2492–2501, http://dx.doi.org/10.1002/jps.22010 [26] D.V McCalley, Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography, J Chromatogr.

A 1483 (2017) 71–79, http://dx.doi.org/10.1016/j.chroma.2016.12.035

Ngày đăng: 31/12/2022, 09:39

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w