Example 1.1: DC Circuit Analysis with Independent Sources For the circuit shown in Figure 1.5, apply Ohm’s law, KVL, and KCL to solve for the labeled voltages and currents.. 1.1.6 Voltag
Trang 2The Industrial Electronics Handbook
S E c o n d E d I T I o n Fundamentals oF IndustrIal electronIcs
Trang 3S E c o n d E d I T I o n Fundamentals oF IndustrIal electronIcs Power electronIcs and motor drIves control and mechatronIcs IndustrIal communIcatIon systems IntellIgent systems
Trang 4The Electrical Engineering Handbook Series
Series Editor
Richard C Dorf
University of California, Davis
Titles Included in the Series
The Avionics Handbook, Second Edition, Cary R Spitzer
The Biomedical Engineering Handbook, Third Edition, Joseph D Bronzino
The Circuits and Filters Handbook, Third Edition, Wai-Kai Chen
The Communications Handbook, Second Edition, Jerry Gibson
The Computer Engineering Handbook, Vojin G Oklobdzija
The Control Handbook, Second Edition, William S Levine
CRC Handbook of Engineering Tables, Richard C Dorf
Digital Avionics Handbook, Second Edition, Cary R Spitzer
The Digital Signal Processing Handbook, Vijay K Madisetti and Douglas Williams The Electric Power Engineering Handbook, Second Edition, Leonard L Grigsby
The Electrical Engineering Handbook, Third Edition, Richard C Dorf
The Electronics Handbook, Second Edition, Jerry C Whitaker
The Engineering Handbook, Third Edition, Richard C Dorf
The Handbook of Ad Hoc Wireless Networks, Mohammad Ilyas
The Handbook of Formulas and Tables for Signal Processing, Alexander D Poularikas Handbook of Nanoscience, Engineering, and Technology, Second Edition,
William A Goddard, III, Donald W Brenner, Sergey E Lyshevski, and Gerald J Iafrate
The Handbook of Optical Communication Networks, Mohammad Ilyas and
Hussein T Mouftah
The Industrial Electronics Handbook, Second Edition, Bogdan M Wilamowski
and J David Irwin
The Measurement, Instrumentation, and Sensors Handbook, John G Webster
The Mechanical Systems Design Handbook, Osita D.I Nwokah and Yidirim Hurmuzlu The Mechatronics Handbook, Second Edition, Robert H Bishop
The Mobile Communications Handbook, Second Edition, Jerry D Gibson
The Ocean Engineering Handbook, Ferial El-Hawary
The RF and Microwave Handbook, Second Edition, Mike Golio
The Technology Management Handbook, Richard C Dorf
Transforms and Applications Handbook, Third Edition, Alexander D Poularikas
The VLSI Handbook, Second Edition, Wai-Kai Chen
Trang 5The Industrial Electronics Handbook
S E c o n d E d I T I o n Fundamentals oF IndustrIal electronIcs
Edited by
Bogdan M Wilamowski
J david Irwin
Trang 6MATLAB® is a trademark of The MathWorks, Inc and is used with permission The MathWorks does not warrant the accuracy of the text or exercises in this book This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1
International Standard Book Number: 978-1-4398-0279-3 (Hardback)
This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
uti-For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Library of Congress Cataloging‑in‑Publication Data
Fundamentals of industrial electronics / editors, Bogdan M Wilamowski and J David Irwin.
p cm.
“A CRC title.”
Includes bibliographical references and index.
ISBN 978-1-4398-0279-3 (alk paper)
1 Industrial electronics I Wilamowski, Bogdan M II Irwin, J David III Title.
Trang 7Acknowledgments xiii
Editorial.Board xv
Editors xvii
Contributors xxi
Part I Circuits and Signals
Carlotta A Berry and Deborah J Walter
Carlotta A Berry and Deborah J Walter
Stephen M Haddock and J David Irwin
Tina Hudson
Carlotta A Berry and Deborah J Walter
Thomas F Schubert, Jr and Ernest M Kim
Dalton S Nelson
Part II Devices
Bogdan M Wilamowski
Bogdan M Wilamowski and Guofu Niu
Trang 8José M Quero, Antonio Luque, Luis Castañer, Angel Rodríguez,
Adrian Ionescu, Montserrat Fernández-Bolaños, Lorenzo Faraone,
Vishal Saxena and R Jacob Baker
Part III Digital Circuits
Trang 9Part IV Digital and analog Signal Processing
Trang 10The.field.of.industrial.electronics.covers.a.plethora.of.problems.that.must.be.solved.in.industrial.practice Electronic.systems.control.many.processes.that.begin.with.the.control.of.relatively.simple.devices.like.electric.motors,.through.more.complicated.devices.such.as.robots,.to.the.control.of.entire.fabrication.processes An.industrial.electronics.engineer.deals.with.many.physical.phenomena.as.well.as.the.sensors.that.are.used.to.measure.them Thus,.the.knowledge.required.by.this.type.of.engineer.is.not.only.tra-ditional.electronics.but.also.specialized.electronics,.for.example,.that.required.for.high-power.applica-tions The.importance.of.electronic.circuits.extends.well.beyond.their.use.as.a.final.product.in.that.they.are.also.important.building.blocks.in.large.systems,.and.thus.the.industrial.electronics.engineer.must.also.possess.knowledge.of.the.areas.of.control.and.mechatronics Since.most.fabrication.processes.are.relatively.complex,.there.is.an.inherent.requirement.for.the.use.of.communication.systems.that.not.only.link.the.various.elements.of.the.industrial.process.but.are.also.tailor-made.for.the.specific.industrial.environment Finally,.the.efficient.control.and.supervision.of.factories.require.the.application.of.intelli-gent.systems.in.a.hierarchical.structure.to.address.the.needs.of.all.components.employed.in.the.produc-tion.process This.is.accomplished.through.the.use.of.intelligent.systems.such.as.neural.networks,.fuzzy.systems,.and.evolutionary.methods The.Industrial.Electronics.Handbook.addresses.all.these.issues.and.does.so.in.five.books.outlined.as.follows:
1 Fundamentals of Industrial Electronics
2 Power Electronics and Motor Drives
3 Cont rol and Mechatronics
4 Industrial Communication Systems
5 Intelligent Systems
sible Thus,.this.book.closely.follows.the.current.research.and.trends.in.applications.that.can.be.found
The.editors.have.gone.to.great.lengths.to.ensure.that.this.handbook.is.as.current.and.up.to.date.as.pos-in.IEEE Transactions on Industrial Electronics This.journal.is.not.only.one.of.the.largest.engineering.
publications.of.its.type.in.the.world,.but.also.one.of.the.most.respected In.all.technical.categories.in.which.this.journal.is.evaluated,.its.worldwide.ranking.is.either.number.1.or.number.2.depending.on.category As.a.result,.we.believe.that.this.handbook,.which.is.written.by.the.world’s.leading.researchers.in.the.field,.presents.the.global.trends.in.the.ubiquitous.area.commonly.known.as.industrial.electronics
Fundamentals of Industrial Electronics deals with the fundamental areas that form the basis for.
the.field.of.industrial.electronics Because.of.the.breadth.of.this.field,.the.knowledge.required.spans.a.wide.spectrum.of.technology,.which.includes.analog.and.digital.circuits,.electronics,.electromagnetic
machines,.and.signal.processing The.knowledge.gained.here.is.then.applied.in.Power Electronics and
Motor Drives,.Control and Mechatronics,.Industrial Communication Systems,.and.Intelligent Systems,.
and.in.total.form.the.Industrial.Electronics.Handbook
Trang 11For.MATLAB•.and.Simulink•.product.information,.please.contact
Trang 12The.editors.wish.to.express.their.heartfelt.thanks.to.their.wives.Barbara.Wilamowski.and.Edie.Irwin.for.their.help.and.support.during.the.execution.of.this.project
Trang 13John W Steadman
University.of.South.AlabamaMobile,.Alabama
Trang 14Bogdan M Wilamowski.received.his.MS.in.computer.engineering.in.
1966,.his.PhD.in.neural.computing.in.1970,.and.Dr habil in.integrated.circuit.design.in.1977 He.received.the.title.of.full.professor.from.the.president.of.Poland.in.1987 He.was.the.director.of.the.Institute.of.Electronics.(1979–1981).and.the chair.of the solid state electronics.department (1987–1989) at the Technical University of Gdansk,.Poland He.was.a.professor.at.the.University.of.Wyoming,.Laramie,.from 1989 to 2000 From 2000 to 2003, he served as an associate.director at the Microelectronics Research and Telecommunication.Institute,.University.of.Idaho,.Moscow,.and.as.a.professor.in.the.elec-trical.and.computer.engineering.department.and.in.the.computer.sci-ence.department.at.the.same.university Currently,.he.is.the.director.of.ANMSTC—Alabama.Nano/Micro.Science.and.Technology.Center,.Auburn,.and.an.alumna.professor.in.the.electrical.and.computer.engineering.department.at.Auburn.University,.Alabama Dr. Wilamowski.was.with.the.Communication.Institute.at.Tohoku.University,.Japan.(1968–1970),.and.spent.one.year.at.the.Semiconductor.Research.Institute,.Sendai,.Japan,.as.a.JSPS.fellow.(1975–1976) He.was.also.a.visiting.scholar.at.Auburn.University.(1981–1982.and.1995–1996).and.a.visiting.professor.at.the.University.of.Arizona,.Tucson.(1982–1984) He.is.the.author.of.4.textbooks,.more.than.300.refereed.publications,.and.has.27.patents He.was.the.principal.professor.for.about.130.graduate.students His.main.areas.of.interest.include.semiconductor.devices.and.sensors,.mixed.signal.and.analog.signal.processing,.and.computa-tional.intelligence
Dr Wilamowski.was.the.vice.president.of.the.IEEE.Computational.Intelligence.Society.(2000–2004).and.the.president.of.the.IEEE.Industrial.Electronics.Society.(2004–2005) He.served.as.an.associate.edi-
tor.of.IEEE Transactions on Neural Networks,.IEEE Transactions on Education,.IEEE Transactions on
Industrial Electronics,.the.Journal of Intelligent and Fuzzy Systems,.the.Journal of Computing,.and.the International Journal of Circuit Systems and IES Newsletter He.is.currently.serving.as.the.editor.in.chief.
of.IEEE Transactions on Industrial Electronics.
Professor.Wilamowski.is.an.IEEE.fellow.and.an.honorary.member.of.the.Hungarian.Academy.of.Science In.2008,.he.was.awarded.the.Commander.Cross.of.the.Order.of.Merit.of.the.Republic.of.Poland.for.outstanding.service.in.the.proliferation.of.international.scientific.collaborations.and.for.achieve-ments.in.the.areas.of.microelectronics.and.computer.science.by.the.president.of.Poland
Trang 15J David Irwin.received.his.BEE.from.Auburn.University,.Alabama,.
in 1961, and his MS and PhD from the University of Tennessee,.Knoxville,.in.1962.and.1967,.respectively
In.1967,.he.joined.Bell.Telephone.Laboratories,.Inc.,.Holmdel,.New.Jersey,.as.a.member.of.the.technical.staff.and.was.made.a.supervisor.in.1968 He.then.joined.Auburn.University.in.1969.as.an.assistant.professor.of.electrical.engineering He.was.made.an.associate.profes-sor.in.1972,.associate.professor.and.head.of.department.in.1973,.and.professor.and.head.in.1976 He.served.as.head.of.the.Department.of.Electrical.and.Computer.Engineering.from.1973.to.2009 In 1993,.he.was.named.Earle.C Williams.Eminent.Scholar.and.Head From.1982.to.1984,.he.was.also.head.of.the.Department.of.Computer.Science.and.Engineering He.is.currently.the Earle.C Williams.Eminent.Scholar.in.Electrical.and.Computer.Engineering.at.Auburn
Dr Irwin has served the Institute of Electrical and Electronic Engineers, Inc (IEEE) Computer
Society.as.a.member.of.the.Education.Committee.and.as.education.editor.of.Computer He.has.served.
as chairman of the Southeastern Association of Electrical Engineering Department Heads and the.National.Association.of.Electrical.Engineering.Department.Heads.and.is.past.president.of.both.the.IEEE.Industrial.Electronics.Society.and.the.IEEE.Education.Society He.is.a.life.member.of.the.IEEE.Industrial.Electronics.Society.AdCom.and.has.served.as.a.member.of.the.Oceanic.Engineering.Society
AdCom He.served.for.two.years.as.editor.of.IEEE Transactions on Industrial Electronics He.has.served.
on the Executive Committee.of the Southeastern.Center.for.Electrical Engineering Education,.Inc.,.and.was.president.of.the.organization.in.1983–1984 He.has.served.as.an.IEEE.Adhoc.Visitor.for.ABET.Accreditation.teams He.has.also.served.as.a.member.of.the.IEEE.Educational.Activities.Board,.and.was.the.accreditation.coordinator.for.IEEE.in.1989 He.has.served.as.a.member.of.numerous.IEEE.com-mittees,.including.the.Lamme.Medal.Award.Committee,.the.Fellow.Committee,.the.Nominations.and.Appointments.Committee,.and.the.Admission.and.Advancement.Committee He.has.served.as.a.mem-ber.of.the.board.of.directors.of.IEEE.Press He.has.also.served.as.a.member.of.the.Secretary.of.the.Army’s.Advisory.Panel.for.ROTC.Affairs,.as.a.nominations.chairman.for.the.National.Electrical.Engineering.Department.Heads.Association,.and.as.a.member.of.the.IEEE.Education.Society’s.McGraw-Hill/Jacob.Millman Award Committee He.has also served.as.chair.of the IEEE Undergraduate.and Graduate.Teaching.Award.Committee He.is.a.member.of.the.board.of.governors.and.past.president.of.Eta.Kappa.Nu,.the.ECE.Honor.Society He.has.been.and.continues.to.be.involved.in.the.management.of.several.international.conferences.sponsored.by.the.IEEE.Industrial.Electronics.Society,.and.served.as.general.cochair.for.IECON’05
Dr Irwin is the author and coauthor of numerous publications, papers, patent applications, and
presentations,.including Basic Engineering Circuit Analysis,.9th.edition,.published by.John Wiley.&.
Sons,.which.is.one.among.his.16.textbooks His.textbooks,.which.span.a.wide.spectrum.of.engineering.subjects,.have.been.published.by.Macmillan.Publishing.Company,.Prentice.Hall.Book.Company,.John.Wiley.&.Sons.Book.Company,.and.IEEE.Press He.is.also.the.editor.in.chief.of.a.large.handbook.pub-lished.by.CRC.Press,.and.is.the.series.editor.for.Industrial.Electronics.Handbook.for.CRC.Press.Dr Irwin.is.a.fellow.of.the.American.Association.for.the.Advancement.of.Science,.the.American.Society for Engineering Education, and the Institute of Electrical and Electronic Engineers He.received an IEEE Centennial Medal in 1984, and was awarded the Bliss Medal by the Society of.American.Military.Engineers.in.1985 He.received.the.IEEE.Industrial.Electronics.Society’s.Anthony.J Hornfeck.Outstanding.Service.Award.in.1986,.and.was.named.IEEE.Region.III.(U.S Southeastern.Region) Outstanding Engineering Educator in 1989 In 1991, he received a Meritorious Service.Citation from the IEEE Educational Activities Board, the 1991 Eugene Mittelmann Achievement.Award.from.the.IEEE.Industrial.Electronics.Society,.and.the.1991.Achievement.Award.from.the.IEEE.Education.Society In.1992,.he.was.named.a.Distinguished.Auburn.Engineer In.1993,.he.received.the.IEEE.Education.Society’s.McGraw-Hill/Jacob.Millman.Award,.and.in.1998.he.was.the.recipient.of.the
Trang 16Editors xix
IEEE.Undergraduate.Teaching.Award In.2000,.he.received.an.IEEE.Third.Millennium.Medal.and.the.IEEE.Richard.M Emberson.Award In.2001,.he.received.the.American.Society.for.Engineering.Education’s.(ASEE).ECE.Distinguished.Educator.Award Dr Irwin.was.made.an.honorary.profes-sor,.Institute.for.Semiconductors,.Chinese.Academy.of.Science,.Beijing,.China,.in.2004 In.2005,.he.received.the.IEEE.Education.Society’s.Meritorious.Service.Award,.and.in.2006,.he.received.the.IEEE.Educational.Activities.Board.Vice.President’s.Recognition.Award He.received.the.Diplome.of.Honor.from.the.University.of.Patras,.Greece,.in.2007,.and.in.2008.he.was.awarded.the.IEEE.IES.Technical.Committee.on.Factory.Automation’s.Lifetime.Achievement.Award In.2010,.he.was.awarded.the.elec-trical.and.computer.engineering.department.head’s.Robert.M Janowiak.Outstanding.Leadership.and.Service.Award In.addition,.he.is.a.member.of.the.following.honor.societies:.Sigma.Xi,.Phi.Kappa.Phi,.Tau.Beta.Pi,.Eta.Kappa.Nu,.Pi.Mu.Epsilon,.and.Omicron.Delta.Kappa
Trang 17Montserrat Fernández-Bolaños
Ecole.Polytechnique.Fédérale.de.LausanneLausanne,.Switzerland
Stephen M Haddock
Department.of.Electrical.and.Computer
EngineeringAuburn.UniversityAuburn,.Alabama
James A Heinen
Department.of.Electrical.and.Computer
EngineeringMarquette.UniversityMilwaukee,.Wisconsin
Tina Hudson
Department.of.Electrical.and.Computer
EngineeringRose-Hulman.Institute.of.TechnologyTerre.Haute,.Indiana
Francisco Ibáñez
European.CommissionBrussels,.Belgium
Trang 18Victor P Nelson
Department.of.Electrical.and.Computer
EngineeringAuburn.UniversityAuburn,.Alabama
Russell J Niederjohn (deceased)
Department.of.Electrical.and.Computer
EngineeringMarquette.UniversityMilwaukee,.Wisconsin
Guofu Niu
Department.of.Electrical.and.Computer
EngineeringAuburn.UniversityAuburn,.Alabama
Nam Pham
Department.of.Electrical.and.Computer
EngineeringAuburn.UniversityAuburn,.Alabama
Arlen Planting
Department.of.Electrical.and.Computer
EngineeringBoise.State.UniversityBoise,.Idaho
José M Quero
Department.of.Electronic.EngineeringUniversity.of.Seville
Sevilla,.Spain
Sadasiva M Rao
Department.of.Electrical.and.Computer
EngineeringAuburn.UniversityAuburn,.Alabama
Trang 19Deborah J Walter
Department.of.Electrical.and.Computer
EngineeringRose-Hulman.Institute.of.TechnologyTerre.Haute,.Indiana
Buren Earl Wells
Department.of.Electrical.and.Computer
EngineeringThe.University.of.Alabama.in.HuntsvilleHuntsville,.Alabama
Edward Wheeler
Department.of.Electrical.and.Computer.Engineering
Rose-Hulman.Institute.of.TechnologyTerre.Haute,.Indiana
Bogdan M Wilamowski
Department.of.Electrical.and.Computer
EngineeringAuburn.UniversityAuburn,.Alabama
Tiantian Xie
Department.of.Electrical.and.Computer.Engineering
Auburn.UniversityAuburn,.Alabama
Trang 201.1 Introduction
Direct.current.(DC).circuit.analysis.is.the.study.of.circuits.with.a.constant.voltage.or.current.source The
most.popular.example.of.a.DC.circuit.is.a.battery.and.a.light.bulb A.DC.circuit.contains.an.active circuit.
element.(i.e.,.battery).capable.of.generating.electric.energy These.electric.sources.convert.nonelectric.energy.to.electric.energy.(i.e.,.a.voltage.or.current) Independent.electric.sources.produce.a.constant.voltage.or.current.in.the.circuit.regardless.of.the.current.through.or.voltage.across.the.source The.sym-bols.for.an.ideal.DC.voltage.and.current.source.are.shown.in.Figure.1.1 It.should.be.noted.that.an.ideal.voltage.and.current.source.can.deliver.or.absorb.power.to.an.electric.circuit An.example.of.an.ideal.voltage.source.absorbing.power.is.a.rechargeable.battery
Dependent.sources.establish.a.voltage.or.current.in.a.circuit.that.is.based.upon.the.value.of.a.voltage.or.current.elsewhere.in.the.circuit One.use.of.dependent.sources.is.to.model.operational.amplifiers.and.transistors Table.1.1.presents.a.summary.of.the.four.types.of.dependent.sources
A.passive.circuit.element.models.devices.that.cannot.generate.electric.energy.such.as.a.light.bulb The.most.common.passive.circuit.elements.are.inductors,.capacitors,.and.resistors The.voltage–current.relationships.for.these.devices.will.be.described.in.the.subsequent.section
1.1 Introduction 1-1
Ohm’s.Law • Inductors.and.Capacitors • Kirchhoff’s Current.Law • Kirchhoff’s.Voltage.Law • Series.and.Parallel Relationships • Voltage.and.Current.Divider.Rule • Delta–Wye (Δ–Y).Transformations
1.2 Systematic.Circuit.Analysis.Techniques 1-7
Node-Voltage.Method • Mesh-Current.Method • Superposition
1.3 Circuit.Modeling.Techniques 1-16
Source.Transformations • Thevenin.and.Norton.Equivalent Circuits • Maximum.Power.Transfer
1.4 Transient.Analysis 1-19
First-Order.Circuits • Second-Order.Circuits
1.5 Conclusions 1-36 Bibliography 1-36
Trang 211.1.2 Inductors and Capacitors
As previously stated, the other two passive circuit elements are inductors and capacitors Both the.inductor.and.the.capacitor.have.the.ability.to.store.energy Inductors.store.energy.in.the.form.of.current.and.capacitors.store.energy.in.the.form.of.voltage The.energy.stored.in.these.elements.is.released.back.into.the.circuit.when.a.DC.source.is.removed Therefore,.these.two.elements.exhibit.behavior.that.is.a.function.of.time The.analysis.of.these.types.of.circuits.is.transient.analysis.that.will.be.addressed.later.in.this.chapter Table.1.2.describes.the.current–voltage.relationship.for.inductors.and.capacitors.where
the.inductance.(L).is.in.henrys.(H),.capacitance.(C).is.in.farads.(F),.and.time.(t).is.in.seconds.(s).
1.1.3 Kirchhoff’s Current Law
ferred Another.way.to.state.this.law.is.for.any.electric.circuit,.the.total.power.delivered.by.the.elements.must.be.equal.to.the.total.power.absorbed.by.the.elements Kirchhoff’s.current.law.(KCL).is.based.upon.the.law.of.conservation.of.energy A.node.in.a.circuit.is.any.point.at.which.two.or.more.circuit.elements.are.connected KCL.states.that.the.sum.of.currents.entering.a.node.is.zero.(i.e.,.current.in.=.current.out) KCL.can.be.applied.to.any.node.in.a.closed.circuit The.circuit.in.Figure.1.3.has.three.branch.currents:
The.law.of.conservation.of.energy.states.that.energy.can.neither.be.created.nor.destroyed,.only.trans-I1,.I2,.and.I3 Since.all.of.these.currents.are.leaving.Node.A,.KCL.at.this.node.yields.Equation.1.6:
Trang 22DC and Transient Circuit Analysis 1-31.1.4 Kirchhoff’s Voltage Law
C
i C dv dt
Trang 23Example 1.1: DC Circuit Analysis with Independent Sources
For the circuit shown in Figure 1.5, apply Ohm’s law, KVL, and KCL to solve for the labeled voltages and currents
The first step in the analysis is to apply KCL at Node A and KVL at the left and right loop These tions are provided in Equations 1.8 through 1.10:
equa-KCL at Node A : − + + =I s I2 I3 0 (1.8)KVL at left loop : −120+ + =V V1 2 0 (1.9)KVL at right loop : − + + =V V V2 3 4 0 (1.10)Next, use Ohm’s law to rewrite Equations 1.9 and 1.10 in terms of the branch currents and resistor values These equations are shown in Equations 1.11 and 1.12:
KVL at left loop: 50I s+100I2=120 (1.11)KVL at right loop: −100I2+20I3+80I3=0 (1.12)Solving the simultaneous set of equations, (1.8), (1.11), and (1.12) yields
I s=1 2 A, I2=0 6 A, I3=0 6 A (1.13)The results in (1.13) and Ohm’s law can be used to find the unknown voltages:
Trang 24DC and Transient Circuit Analysis 1-5
1.1.5 Series and Parallel relationships
At.times,.it.is.useful.to.simplify.resistive.networks.by.combining.resistors.in.series.and.parallel.into.an.equivalent.resistance Exactly.two.resistors.that.are.connected.at.a.single.node.share.the.same.current.and.are.said.to.be.connected.in.series It.is.important.to.note.that.the.equivalent.resistance.of.series.resis-tors.is.larger.than.each.of.the.individual.resistances Resistors.that.are.connected.together.at.a.pair.of.nodes.(“single.node.pair”).have.the.same.voltage.and.are.said.to.be.connected.in.parallel The.equivalent.conductance.of.resistors.in.parallel.is.the.sum.of.the.conductances.of.the.individual.resistors Therefore,.the.reciprocal.of.the.equivalent.resistance.is.the.sum.of.the.individual.conductances Note.that.the.equivalent.resistance.of.parallel.resistors.is.smaller.than.each.of.the.individual.resistances Figure.1.6a.provides.an.example.of.a.circuit.with.series.resistors.and.the.equivalent.resistance.seen.by.the.voltage.source Figure.1.6b.provides.an.example.of.a.circuit.with.parallel.resistors.and.the.equivalent.resistance.seen.by.the.current.source
Example 1.2: Analysis of Example 1.1 by Combining Resistors
It is possible to analyze the circuit in Example 1.1, to find the source current, I s The first step is to recognize that the 80 and 20 Ω resistors are in series and combine to yield 100 Ω This simplified circuit is shown
FIGURE 1.6 Resistors.in.(a).series.and.(b).parallel.
120 V
+ –
I s
50 Ω
FIGURE 1.7 Circuit.in.Example.1.1.simplified.by.putting.80.W.in.series.with.20.W.
Trang 25Finally, the last step is to use Ohm’s law to solve I s, which yields
I s=120=
Note that this result is consistent with the answer to Example 1.1
1.1.6 Voltage and Current Divider rule
Example 1.3: Analysis of Example 1.1 Using Voltage and Current Divider
For the circuit in Figure 1.5, given that I s = 1.2 A, use the current divider to find I2 and the voltage divider to
find V4 The first step in the analysis is to recognize that the 100 Ω resistor is in parallel with the 80 and 20
Ω series combination The current divider relationship to find I2 is shown in Equation 1.19:
I s
100 Ω
FIGURE 1.9 Circuit in Figure 1.8.
simplified.by.putting.50.W.resistors.in series.
8 V +–
16 (16 + 12 + 4)8
16 (16 + 12 + 4)8
4 (16 + 12 + 4)8
(a)
96 || 120 || 80 96
I96Ω= 48 = 16 mA
96 || 120 || 80 120
96 || 120 || 80 80
Trang 26DC and Transient Circuit Analysis 1-7
Ohm’s law can be used to find the voltage, V2, across the 100 Ω resistor, V2 = 100I2 = 60 V The voltage
divider can be used to find the voltage, V4, as shown in Equation 1.20:
V4 80 V2
80 20 48
=
Note that these results are consistent with the solution to Example 1.1
1.1.7 Delta–Wye (Δ–Y) transformations
tions.are.referred.to.as.delta.(“Δ”).or.wye.(“Y”).interconnections These.two.configurations.are.equiva-lent.based.upon.the.relationships.shown.in.Table.1.3 Equivalence.means.that.both.configurations
There.are.some.resistance.configurations.that.are.neither.in.series.or.parallel These.special.configura-have.the.same.voltage.and.current.characteristics.at.terminals.a,.b,.however.internal.to.the.network,.
the.values.may.not.be.the.same
1.2 Systematic Circuit analysis techniques
niques.are.the.node-voltage.method.based.on.KCL.and.the.mesh-current.method.based.on.KVL These.techniques.are.used.to.derive.the.minimum.number.of.linearly.independent.equations.necessary.to.find.the.solution
There.are.two.general.approaches.to.solving.circuits.using.systematic.techniques The.systematic.tech-1.2.1 Node-Voltage Method
The.node-voltage.method.is.a.general.technique.that.can.be.applied.to.any.circuit An.independent.KCL.equation.can.be.written.at.every.essential.node.(nodes.with.three.or.more.elements.connected).except.for.one The.standard.practice.is.to.choose.the.ground.node.as.the.reference.node.and.omit.the.ground
Trang 27Example 1.4: Node-Voltage Method with Independent Sources
Given the circuit in Figure 1.11, use the node-voltage method to find the power delivered by each source
Recall that the first step in the analysis was to label the essential nodes The four essential nodes in
Figure 1.11 have already been labeled as V1, V2, V3, and ground (0 V) Since V1 is the voltage at that node
with respect to the reference node (“ground node”), it is tied to the 200 V source so V1 = 200 V The node voltages V2 and V3 are unknown, thus KCL must be performed to find these values In order to simplify analysis, the KCL equations are derived such that the current is drawn leaving the node if it is not given
The KCL equations at V2 and V3 are given in Equations 1.21 and 1.22:
Using the results of Equation 1.23, it is possible to find the power associated with the 1 A current source
Since the voltage across the current source is V3, and it is not in the passive sign convention, the power is
FIGURE 1.11 Node-voltage.method.circuit.
Trang 28DC and Transient Circuit Analysis 1-9
P = −V3 (1) = −265 W or 265 W delivered In order to find the current through the 200 V source, it is necessary
to use KCL at V1 The KCL equation at V1 is given in Equation 1.24:
Example 1.5: Analysis of Example 1.4 with 𝚫-Y Transformations
For the circuit in Figure 1.11, use Δ-Y transformations to find the power associated with the 200 V source The first step in the analysis is to identify that the 500, 100, and 400 Ω resistors form a Δ configuration as
R a , R b , and R c, respectively This circuit can be simplified by converting the Δ configuration to a Y ration Equations 1.26 through 1.28 are used to find the resistor values in the Y configuration The simpli-fied circuit is shown in Figure 1.12
Trang 29Using the result in Equation 1.30 to find the current through the 200 V source yields
I s=V A−2 =
00
Thus, the power absorbed by the 200 V source is 100 W, consistent with the prior solution
Example 1.6: Node-Voltage Method with Dependent Sources
The circuit in Figure 1.13 models an operational amplifier An operational amplifier is an active circuit element used to perform mathematical operations such as addition, subtraction, multiplication, divi-sion, differentiation, and integration This electronic unit is an integrated circuit that can be modeled as
a VCVS The gain of the op amp is the ratio of the output voltage to the input voltage, (V o /V s ) Use KCL to determine the gain of the circuit in Figure 1.13
The KCL equations at Nodes A and B are shown in Equations 1.32 and 1.33:
Note that the dependent source introduces a constraint equation based upon the relationship between
the node voltage and the controlling voltage, V d This relationship is V A = −V d This produces two tions and two unknowns that can be solved for the gain shown in Equation 1.34:
equa-V V
–
–
FIGURE 1.13 DC.circuit.with.dependent.sources.(operational.amplifier.model).
Trang 30DC and Transient Circuit Analysis 1-11
Example 1.7: Node-Voltage Method with Supernodes
Use the node-voltage method on the circuit in Figure 1.14 to find the current through the voltage source The first step in the analysis is to label the node voltages and supernode These have already been labeled
in the circuit in Figure 1.14 Next, KCL at the supernode yields Equation 1.35, and KVL at the supernode yields Equation 1.36:
500 100 125 0
+I Ω+I Ω+I Ω= + V + V + V = (1.35)KVL at supernode: − +V1 25 + =V2 0 (1.36)Solving these two equations and two unknowns yields
To find the current through the voltage source, it is necessary to perform KCL at V1 or V2 Since the
2 A current source is connected to V1, this selection will have one less term with a voltage variable
Assuming the current through the voltage source, I s , flows from right to left and applying KCL at V1 yields the following equation:
KCL at supernode: I s = 2 + I500Ω + I250Ω = 2 155 m + 100− m = 1.945 A (1.39)
1.2.2 Mesh-Current Method
The.goal.of.the.mesh-current.method.is.to.determine.all.of.the.unknown.mesh.currents.in.a.circuit A.mesh.is.a.loop.in.a.circuit.that.does.not.contain.any.other.loops The.mesh-current.method.is.only.applicable.to.planar.circuits,.circuits.that.can.be.drawn.on.a.plane.with.no.crossing.branches The.first.step.in.the.analysis.is.to.label.all.of.the.mesh.currents.in.a.circuit The.mesh.currents.are.fictitious.cur-rents.that.circulate.in.a.mesh Note.that.a.mesh.current.may.or.may.not.be.a.branch.current,.but.all.of.the.branch.currents.can.be.found.from.the.mesh.currents The.next.step.is.to.write.KVL.equations.summing
Trang 31Example 1.8: Mesh-Current Method on Example 1.6
For the circuit in Figure 1.15, use the mesh-current method to determine the output voltage V o if the
constraint: V d = 2 (M I2−I1) (1.42)Solving these three simultaneous equations for the mesh currents yields
I1 = 299.997 µA, = 300.002 I2 µA, V d = 30.075 V− µ (1.43)
Using the mesh current value to find V o yields
V o = 50 + 2 10 = 6 VI 5V d
The reader should verify that this gain is consistent with Example 1.6
A special case of the mesh-current method occurs when a current source is shared between two meshes In this case, it is necessary to introduce another variable to describe the voltage across the current source in order to write the KVL equation An alternate approach is to define the two meshes
that include the current source and anything in series with it as a supermesh The 6 A current source
in series with the 1 Ω resistor in Figure 1.16 creates a supermesh denoted by the superimposed rectangle
In order to analyze a supermesh, it is necessary to perform KVL and KCL at the supermesh Lastly, write
a KVL equation for any other unknown mesh currents in the circuit and solve the simultaneous system of equations This method will be demonstrated on the circuit in Figure 1.16
Trang 32DC and Transient Circuit Analysis 1-13
Example 1.9: Mesh-Current Method with a Supermesh
Use the mesh-current method to find the power associated with the 6 A current source The first step in the analysis is to label the supermesh and mesh currents These have already been labeled in the circuit
in Figure 1.16 The next step is to derive the KVL and KCL equations at the supermesh and these are shown in Equations 1.45 and 1.46:
KVL at supermesh: 2 + 3 +5− I1 I2−10 + 9 + 7 = 0I2 I1 (1.45)
KCL at supermesh: I1 = 6−I2 (1.46)
Solving this simultaneous set of equations yields
I1 = 4 , A I2 = 2 − A (1.47)
In order to determine the power associated with the 6 A current source, it is necessary to perform KVL
at the left or right mesh to find the voltage across the current source Assuming the voltage across the
current source, V s, is positive on top and applying KVL at the left mesh yields
Trang 33same.time.is.equal.to.the.sum.of.the.same.quantity.due.to.each.source.acting.alone The.method.to.solve.for.an.unknown.variable.in.a.circuit.involves.solving.for.the.variable.of.interest.for.one.source.acting.alone.by.deactivating.all.the.other.independent.sources,.then.sum.the.results.for.each.source.act.ing.alone To.deactivate.an.independent.voltage.source,.replace.the.voltage.source.with.a.short.cir-cuit.(0.V) To deactivate.an.independent.current.source, replace.the current.source with an open.cir.cuit.(0.A) Dependent.sources.are.never.deactivated.(“turned.off ”) The.benefit.in.applying.the.principle.of.superposition.is.that.many.times,.the.circuit.with.the.deactivated.source.is.simpler.to.solve.for.the.unknown.value.
Example 1.10: Circuit Analysis Using Superposition
For the circuit in Figure 1.16, apply the principle of linear superposition to solve for the unknown branch
current I1 (see Figure 1.17)
The first step in the analysis is to disable the 6 A and 10 V sources and use KVL to calculate I1 The tion to this analysis is shown in Equation 1.49 The variable of interest is given a prime to denote that it is due to one source acting alone (see Figures 1.18 through 1.20)
Trang 351.3 Circuit Modeling techniques
Just.like.it.is.possible.to.model.the.behavior.of.multiple.resistors.connected.in.parallel.and.series.with.a.single.equivalent.resistance,.it.is.also.possible.to.model.resistive.circuits.containing.sources.and.resistors.as.either.a.Thevenin.or.Norton.equivalent.model These.models.are.useful.simplifying.techniques.when.only.the.circuit.behavior.at.a.single.port.is.of.interest
1.3.1 Source transformations
Source.transformations.are.another.simplifying.technique.for.circuit.analysis Source.transformations.are.based.upon.the.concept.of.equivalence.of.the.voltage.and.current.terminal.characteristics.at.a.single.port A.voltage.source.in.series.with.a.resistor.can.be.replaced.by.a.current.source.in.parallel.with.a.resis-tor.if.they.have.the.relationships.given.in.Figure.1.21
1.3.2 thevenin and Norton Equivalent Circuits
A.simple.resistive.circuit.can.be.simplified.to.an.independent.voltage.source.in.series.with.a.resistor.and.this
is.referred.to.as.the.Thevenin.equivalent.circuit The.voltage.source.is.referred.to.as.the.Thevenin.voltage,.V TH,
and.the.resistor.is.the.Thevenin.resistance,.R TH In.addition,.a.simple.resistive.circuit.can.be.simplified.to.an.independent.current.source.in.parallel.with.a.resistor.and.this.is.referred.to.as.the.Norton.equivalent.circuit
The.current.source.is.the.Norton.current,.I N,.and.the.resistance.is.the.same.as.the.Thevenin.resistance These.are.important.simplification.techniques.when.the.values.of.interest.are.the.port.characteristics.such.as.the.voltage,.current,.or.power.delivered.to.a.load.placed.across.the.terminals The.method.to.find.the.Thevenin
rent.is.to.find.the.short.circuit.current.between.terminals.a.and.b There.are.several.techniques.to.find.the.
voltage.is.to.determine.the.open.circuit.voltage.across.terminals.a.and.b The.method.to.find.the.Norton.cur-Thevenin.equivalent.resistance When.there.are.only.independent.sources,.one.of.the.more.popular.methods.is.to.deactivate.all.independent.sources.and.find.the.equivalent.resistance.of.the.network.across.terminals
a and.b Alternately,.the.Thevenin.resistance.can.be.calculated.by.using.the.following.formula:
V I
V I
oc sc
TH N
=
I p
FIGURE 1.21 Source transformation relationships (a) Series circuit, V s =I p R p , R s =R p and (b) parallel circuit,.
I p =V s /R s , R p =R s .
Trang 36DC and Transient Circuit Analysis 1-17
Note.that.when.there.are.dependent.sources.in.the.circuit,.there.is.a.third.technique.based.upon.deacti-
vating.all.independent.sources.and.using.a.test.voltage.or.current.at.terminals.a.and.b.to.find.the.equiva-lent.resistance The.reader.is.encouraged.to.review.this.technique.for.future.study
Example 1.11: Thevenin Equivalent Resistance
For the circuit in Figure 1.22, determine the Thevenin equivalent resistance to the left of terminals
a and b.
In order to find the Thevenin equivalent resistance, deactivate the two independent sources and find
the equivalent resistance to the left of terminals a and b The circuit in Figure 1.22 is shown in Figure 1.23
with the sources deactivated
In the circuit in Figure 1.23, the 10 and 40 Ω resistors are in parallel This parallel combination is
in series with the 8 Ω resistor Equation 1.54 shows the derivation of the Thevenin equivalent
resis-tance, R TH:
R TH = 10 || 40 + 8 = 16Ω (1.54)
Example 1.12: Thevenin and Norton Equivalent Circuits
For the circuit in Figure 1.22, find the Thevenin and Norton
equivalent circuit to the left of terminals a and b The first step
in the analysis is to find the open circuit voltage between
terminals a and b (V TH = V oc = V a ) Either the node-voltage or mesh-current method would be an acceptable technique to find this value, however the node-voltage method was used by
writing the KCL equation at V 1 and V a and these are shown in Equation 1.55:
Trang 37V1 = 80 V, = = = 112 VV TH V oc V a
The next step in the analysis is to find the short circuit current between terminals a and b (I N = I sc = I ab )
The mesh-current method will be used to determine short circuit current, I sc, as shown in Figure 1.24 The result of the analysis is shown in Equation 1.56:
KVL at : I1 −60 + 10( 4) + 40 ( ) = 0I1 − I1 − I N
(1.56)KVL at : 40 ( ) + 8( 4) = 0I N I N − I1 I N −
I1 = 7.6 A, I N = = = 7 AI sc I ab
The Thevenin equivalent resistance can also be found from
R V I
V I
TH oc sc TH N
Note that this Thevenin resistance is consistent with Example 1.11 The final step in the result is to
draw the Thevenin and Norton equivalent circuits to the left of terminals a and b These are shown
Trang 38V R
L TH TH
= 2
Example 1.13: Maximum Power Transfer
For the circuit shown in Figure 1.22, determine the value of a load resistor placed across terminals a and b
for maximum power transfer and calculate the value of the power for the load selected (see Figure 1.26).Since the Thevenin equivalent resistance of this circuit is 16 Ω, select RL = R TH = 16 Ω for maximum power transfer Finally, the value of the power delivered to the 16 Ω is calculated as follows:
P V R
L TH TH
1.4.1 First-Order Circuits
tions.are.either.RL.circuits.or.RC.circuits.based.upon.whether.they.have.resistors.and.capacitors.or.resistors.and.inductors,.respectively RL.and.RC.circuits.are.known.as.first-order.circuits.because.the
FIGURE 1.26 Circuit.for.maximum.power.transfer.example.
Trang 39Example 1.14: Natural Response of an RL Circuit
For the circuit in Figure 1.27, assume that the switch is in position a for a long time and moves to position
b at t = 0 Find the current through the inductor, i(t), and the voltage across the inductor, v(t), for t > 0.
a
b
10 V
i(t) v(t)
t = 0
1 Ω
+ –
+
–
100 mH
FIGURE 1.27 RL.circuit.for.Example.1.14.
Trang 40DC and Transient Circuit Analysis 1-21
The first step in the analysis is to find the initial conditions for the circuit in Figure 1.27 In order to find
the initial conditions, redraw the circuit at t = 0− (before the switching occurs) under DC conditions The circuit to find the initial conditions is shown in Figure 1.28 Since an inductor under DC or steady-state
conditions is modeled as a short circuit, the initial voltage, v(0−), is 0 V It is modeled as a short circuit
because the current is constant with time; therefore, the time rate of change of the current (di L /dt) is zero and the voltage (v L = L(di L /dt)) over the inductor is 0 V Using Ohm’s law on the circuit in Figure 1.28, it is possible to find the initial current, i(0−) as shown in Equation 1.61 Note that because the inductor is a short circuit, the 20 Ω resistor is shorted out and has no affect on the circuit
i( )0 10
1 10
Since the voltage across an inductor can change instantaneously, the circuit must also be analyzed
immediately after switching occurs at t = 0+ For this analysis, model the inductor as a 10 A current source
because current cannot change instantaneously so i(0+) = i(0−) = 10 A Next, use KCL to find the voltage across the inductor The circuit is shown in Figure 1.29 and the analysis in Equation 1.62: