Sangam 7 Thispaperdealswiththedesignofnitevolumeapproximationofhyperb ation laws in ordinates.. Inthis paperwe derive anew nite volumemethodfor hyperb ation laws in ordinates.. Asa Carte
Trang 1E N.Crouseilles,H.Guillard,B.Nkonga,andE ker,Editors
∗
A Bonnement
1
, T Fajraoui
2
, H Guillard
3
, M Martin
4
, A Mouton
5
, B
Nkonga
6
and A Sangam
7
Thispaperdealswiththedesignofnitevolumeapproximationofhyperb ation
laws in ordinates h ordinatesare terednaturally inmanyproblemsas for
in the analysis of a large number of models from t fusion in
tokamaks Inthis paperwe derive anew nite volumemethodfor hyperb ation laws in
ordinates Themethodis rst ed inageneral settingand thenis illustrated in
2Dpolar ordinates experimentsshowitsadvantageswithresp totheuseofCartesian
ordinates
1 Intr
ationlaws h hemesare whenoneisinterestedin thepropertiesofthe
ph model under in h ordinatessystemplay animportantrole Theph models
ofinterestarefor those harged motioninsolarwindsintheframeofastroph
plasmas[4℄orthetransportof harged inatokamak,a FusionConnement
totheignitionof trolledthermon fusion onearth[4,8,10℄
More ,in magnetizedplasma,therearetwo behavioursof alongand
mag-eldlines Thisleadstohighly owsoftheplasma Asa Cartesian ordinates
donot anappropriatesystemto etheph thattakes intheplasma Instead,other
systemsof ordinatesarepreferred,asfor eldaligned ordinatessystems[1,2℄,Boozer ordinates
or Hamada ordinates[6℄ Theeld governingequations writtenin these generalized systemsare
generally not in ation laws form: spatially varying ts multiply the dierential
termsandadditional termsappearin theequations Thereforethedesignofanitevolumemethod is
notasstraighforwardasitisin Cartesian ordinatesand additionallyimportant ationproperties
belostb the Anotherrelevantquestionthat arisesin this text therepresentation
∗
A.BonnementwassupportedinpartbytheConseilRégionalPr e-Alpes-Cted'Azur
1
INRIASophia-Antipolis&Université Sophia-Antipolis,UMRCNRS6621(F e-mail:audrey.bonnemen
2
UniversitéV FRCNRS2956(F e-mail:tarek.fajraouiuniv-v
3
INRIASophia-Antipolis&Université Sophia-Antipolis,UMRCNRS6621(F e-mail:Herve.Guillardinria.fr
4
Université Sophia-Antipolis,UMRCNRS6621&INRIASophia-Antipolis(F e-mail:
5
UniversitéToulouse3,UMRCNRS5219(F e-mail:alexandre.moutonmath.univ-toulouse.fr
6
Université Sophia-Antipolis,UMRCNRS6621&INRIASophia-Antipolis(F e-mail:b
7
Université Sophia-Antipolis,UMRCNRS6621&INRIASophia-Antipolis(F e-mail:afein
Article published online by EDP Sciences and available at http://www.esaim-proc.org or http://dx.doi.org/10.1051/proc/2011019
Trang 2ofv andthe ofthebasisin hthesev areexpressed in ordinates,the
basisarespatiallydependent For thepro ofav inthelo basisofthe onding
ordinatessystemintro terms fromthevariationsoflo basiswithresp tothevariables
ofthe hosen ordinates,and the ationlawsformoftheequationis thereforelost Froma
n pointofview,ndinganappropriateapproximationofthiskindoftermsthatkeepsthe ation
propertiesof the system ofequations remains a hallenge, for this purpose it is useful to think about
termsinshallowwatersystems,ortoCoriolis termingeoph equations[7℄
gen-eral ordinates, withoutany preliminarpro when dealingwith v equations Averaged
termsina tmannerindependentlyofthe systemused
Thispaperis organizedasfollows In 2,prerequisiteson ordinatesare Finite
volumemethodsinthese ordinatesaredesignedin 3 testsusingtwo-dimensional
ordinatesasexamplearethen in 4inordertoillustrate our h Finally,
isgivenin 5
Letus aph modeldenedonaph domainΩ(x) ⊂ R 3
,where hpointM (x)ofΩ(x)is
lo b itsCartesian ordinatesx = t (x 1
, x 2 , x 3 ) Suppose nowtheph model under
beeasily ed inanother ordinatessystems, sothat theph model belookedthroughthe
domain Ω(ξ),where ξ = t (ξ 1
, ξ 2 , ξ 3 ) Thedomain Ω(ξ)will bereferredto asthe domain, and the onding ordinates systemξas ordinates Obviously, thereexists anone-to-one map
φ : ξ 7→ x, h isassumed to be at leastaC 1
-dieomorphism, h means that J the determinant ofthe matrixMJ ofφdenedb
M J =
∂x 1
∂ξ 1 ∂x 1
∂ξ 2 ∂x 1
∂ξ 3
∂x 2
∂ξ 1
∂x 2
∂ξ 2
∂x 2
∂ξ 3
∂x 3
∂ξ 1
∂x 3
∂ξ 2
∂x 3
∂ξ 3
is positive Tointro the expressions ofthe gradientand the div operators, ∇, ∇ ·, with resp to ordinatesξthatwillbeusedinthispaper,itisusefultodenethelo variantbasis
ek asso tothetransformationφgivenb
ek = ∂x
∂ξ k = ∂x
1
∂ξ k i + ∂x
2
∂ξ k j + ∂x
3
∂ξ k k ,
wherek = 1, 2, 3,andi,j andkarev ofthe basis ondingto theCartesian ordinates system The travariantbasise k
asso toe k isprovidedthroughtherelations
e k · ej = δ j k ,
whereδ k
j isthe kertensor
With thesequantities,thegradientofthev eldV (ξ)isgivenb
∇ V = ∂V
∂ξ k ⊗ e k = ∂V
i
∂ξ k + V m Γ i
mk
ei ⊗ e k
Trang 3(The Einstein summation vention is assumed through this paper.) Here Γ i
mk are the Christoel symbols givenb
∂em
∂ξ k = Γ i
mk ei ,
andrepresentthepro ontoei ofthe hangeofthev em toξ k
Thediv ofthev eldV (ξ)isdenedasthe ofthegradient
∇ · V = ∂V
∂ξ k · e k = ∂V
i
∂ξ k + V m Γ i
mk
ei · e k = ∂V
k
∂ξ k + V k Γ i
ki
Byusingtheidentity
1 J
∂J
∂ξ k = Γ i
ki,onegetsthe expression
∇ · V = 1
J
∂(JV · e k )
∂ξ k
ConsideringatensoreldT,itsgradientisgivenb
∇ T = ∂T
∂ξ k ⊗ e k
Theabo erelation beexpandedasfollows
∇ T = ∂T
ij
∂ξ k + T mj Γ i mk + T im Γ j mk
Thediv ofthetensoreldT isgivenb
∇ · T = ∂T
∂ξ k · e k
Usingrelation(2.1)thisleadsto
∇ · T = 1
J
∂
∂ξ k J T · e k
Weare nowready to designanite volume methodsin ordinatesforhyperb ation
laws
Letus ageneralhyperb ationlawequationswritten ina ordinatefreemanneras
∂W
∂t + ∇ · F (W ) = 0 ,
whereW isthestatevariable andF (W ) isitsux
Letusalso a transformationφ : ξ 7→ x,whose determinantof isJ Usingthe resultsoftheprevious andnotingthat∂tJ = 0,it beseenthatinthis ordinatessystem,theabo e equationb
∂J W
∂ξ k
J F (W ) · e k
= 0
Inordertoseethe touroftheproblem,wewillstudyseparatelythe ofnitevolumemethod
W
Trang 4ux F (W ) isav Ina step,wewill the whereW isav whileitsuxF (W )is
atensor
∂(J S)
∂ξ k
J V · e k
T examplesfor aretheequationsof tinuityandenergyinuid
A tothenitevolumephilosophy,the equationsaresimplyobtainedb integrating(3.2)on
volumes(Ωi) i∈ N Then integrating equation (3.2)o era Ωi and dividingthe resultb the volume |Ωi|, onegets
1
|Ωi|
Z
Ω i
∂(J S)
|Ωi|
Z
Ω i
∂
∂ξ k
J V · e k
dΩ = 0 ,
h berewrittenas
∂
∂t
1
|Ωi|
Z
Ω i
J S dΩ
|Ωi|
Z
Ω i
∂
∂ξ k
J V · e k
dΩ = 0
Intro thea erageS i = 1
|Ω i | R
Ω i J S dΩyields,
∂
∂t
Si
|Ωi|
Z
Ω i
∂
∂ξ k
J V · e k
dΩ = 0
Theuxtermisalsoimmediately b thediv theorem,onehas
Z
Ω i
∂
∂ξ k
J V · e k
dΩ = Z
∂Ω i
where ∂Ωi istheboundaryofΩi,nistheoutwardpointingunit v normaltothe ∂Ωi,and dσ(Ω)
theLebesguemeasureonthis Therighthandsideof(3.3)isimmediately assoonasonehas
n uxes[3,5,9℄ For this itisreadilyseenthat thereisno betweenthe of
nitevolumemethodin ordinatessystemandinaCartesianone
This dealswithW = V av andF (W ) = T atensor, thenthehyperb equationturns into
∂(J V )
∂ξ k
J T · e k
Momentum equationinuid is hakindofequations
Byusingthesamepro asin onegetsthefollowing heme,
∂
∂t
1
|Ωi|
Z
Ω i
J V dΩ
|Ωi|
Z
Ω i
∂
∂ξ k
J T · e k
and atrst this seemssimilar tothe one However, V isav ithastobestored
Trang 5equation(3.4)b thebasisv e k
(resp e k)andthentoobtain equationsforthe variant onents
ofthe v eldV k
(resp travariant onentsV k) Then these equationsare using the resultsof 3.1 In thesequel, wewill designate this method asthe pro tegrationmethod
This hhasoneimportant b thebasisv are spatiallydependent, theydonot
utewiththedierentialoperatorsandtherefore termsappearintheequations(seeequation(4.21)
for Theapproximationofthesetermsis andmoreoveritdependsonthesp
systemused
We therefore advo the use of the following pro that we will be the integration-pro
method
Firstwedene ana eragebasisinthe Ωi by:
ei,k = 1
|Ωi|
Z
Ω i
J ek dΩ ,
sothatoneobtains,assumingthatVi,k is tin a
1
|Ωi|
Z
Ω i
J V dΩ = Vi,k ei,k
Here, ei,k is the kth a eragev in the Ωi withresp to the hosen ordinates, and b denitionVi,krepresentsthea eragevalueofV alongthekthv tothe onding
ordinates The nitevolumeapproximationisthendened b
∂
∂t V i,k + e
i,k
|Ωi| . Z
Ω i
∂
∂ξ k
J T · e k
where(e i,k )k isthe travariantbasisasso to(ei,k)k
This pro is quitesimpleand itallowsforageneral(and ofthe terms In
thenext wedetailitinthe of2Dpolar ordinates
The ofnite volumemethodproposedin 3isillustratedin 2Dpolar ordinates
4.1 2D polar ordinates and nite volume method
Letus 2Dpolar ordinatesdenoted b (r, θ) ∈ (0, +∞[×[0, 2π)relatedtoCartesian ordinates
(x, y)b (x, y) = φ(r, θ)as follows,
x = r cos θ ,
y = r sin θ
We the usual orthonormal basis (ex , e y) of R 2, and then the variant basis asso with the ordinates(r, θ)isgivenb
e r =
cos θ sin θ
, e θ =
−r sin θ
r cos θ
The determinant asso to the transformation φ is J = r while the travariant basis with resp to
(er, eθ)isgivenb
e r =
cos θ sin θ
, e θ = 1
r
− sin θ cos θ
Trang 6
Working with the variant v e θ and the travariant v e θ
leads to a r, it is then appropriateto theirasso unit v
˜
eθ = 1
r eθ , e ˜ θ = r e θ
Then,for av V bewritten asV = V r e r + V θ e ˜ θ
Equippedwiththesenotations,we writedowntheexpressionsofgradientanddiv operators The
gradientofa S in polar ordinateswrites
∇ S = ∂rS e r + 1
r ∂θS ˜ e
θ
Letuswritethev V asV = V r er + V θ eθ ˜,itsdiv isgivenb
∇ · V = 1
r ∂r(r V r ) + 1
r ∂θ(r V θ ) = ∂rV r + 1
r V
r + ∂θV θ
T = T r,r er ⊗ er + T r,θ er ⊗ ˜ eθ + T θ,r eθ ˜ ⊗ er + T θ,θ eθ ˜ ⊗ ˜ eθ
Thediv ofT isgivenb thefollowingformula,
∇ · T = 1
r ∂ r(rT · e r ) + 1
r ∂ θ(rT · ˜ e θ )
= 1
r ∂ r(r T r,r er + r T r,θ eθ) + ˜ 1
r ∂ θ(r T θ,r er + r T θ,θ eθ) ˜
Now,letV = V r e r + V θ e ˜ θbeav htemporalevolutionisgovernedb ,
∂(J V )
∂ξ k
J T · e k
whereT isatensor
Applyingthepro developedin theprevious onegetsthefollowing heme,
∂Vi,r
∂t e i,r + ∂Vi,θ
∂t e i,θ + 1
|Ωi|
Z
Ω i
∂
∂ξ k
J T · e k
whereVi,r and Vi,θ area eragevaluesofV r andV θ,resp elyin the Ωi,whileei,r andei,θ area erage
v inthe Ωi,
ei,r = 1
|Ωi|
Z rer dΩ , ei,θ = 1
|Ωi|
Z
r eθ ˜ dΩ
Trang 71 2 3 4
A
B
C
D
θ A θB
Fig1: A inpolar ordinates
For y,thetensorT isassumedtobe i.e T r,θ = T θ,r
Wealso hoseatensorialmeshso
that the Ωi belo b thesegmentspro [rD , r A] × [θA , θ B ](seeFigure1) Then thea erage
v ei,r andei,θ beexpressedas
e i,r = 1
θ B − θA ( ˜ e θ A − ˜ e θ B ) , ei,θ = 1
θB − θA (er B − er A ) ,
where
er A = er D =
cos θA sin θA
, eθ ˜ A = ˜ eθ D =
− sin θA cos θA
,
and
e r B = er C =
cos θB sin θB
, e ˜ θ B = ˜ e θ C =
− sin θB cos θB
Finally,forany f = f (r, θ),weusethefollowingapproximations:
ˆ f| rD ≈ f (rD, θ) , f| ˆ rA ≈ f (rA, θ) , ∀ θ ∈ [θA, θB] , ˆ
f| θA ≈ f (r, θA) , f| ˆ θB ≈ f (r, θB) , ∀ r ∈ [rD, rA]
Thenequation(4.8)b
|Ωi| (∂tVi,r ei,r + ∂tVi,θ ei,θ) + rA T ˆ r,r
| rA − rD T ˆ | r,r
rD
(eθ A − eθ B ) + rA T ˆ r,θ
| rA − rD T ˆ | r,θ
rD
er B − er A
+ (rD − rA) ˆ T r,θ
| er B + ˆ T | θ,θ eθ B − ˆ T | r,θ er A − ˆ T | θ,θ eθ A
= 0
(4.9)
Trang 8Itisinterestingtoexpandequation(4.9)onthepairoforthogonalv e i,r ande i,θ, hyields
|Ωi| ∂tVi,r + (θB − θA) (rA T ˆ | r,r
rA − rD T ˆ | r,r
rD ) + θB − θA
2
sin(θB − θA)
1 − cos(θB − θA) (rA − rD) ( ˆ T
r,θ
| θB − ˆ T | r,θ
θA )
− (θB − θA) (rA − rD)
ˆ
T | θ,θ
θB + ˆ T | θ,θ θA
(4.10)
|Ωi| ∂t V i,θ + (θB − θA) (rA T ˆ | r,θ
rA − rD T ˆ | r,θ
rD ) + θ B − θA
2
sin(θB − θA)
1 − cos(θB − θA) (rA − rD) ( ˆ T
θ,θ
| θB − ˆ T | θ,θ
θA )
+ (θB − θA) (rA − rD)
ˆ
T | r,θ
θB + ˆ T | r,θ θA
(4.11)
Equations(4.10)-(4.11) be asresultsof integrationo erΩi followedb pro ontoei,r
andei,θ of (4.7) Thisoperationisreferredtoasintegration-pro pro
Itis venientto equations(4.10)-(4.11)withtheresultofthetraditional h,thatispro
integrationpro appliedto(4.7) Thepro of (4.7)ontoer andeθ leadsto,
and
Equations(4.12)-(4.13)arenolonger ative theyownrighthandside terms,the ative
of the original equation (4.7) is lost during the pro operation This is due to variations of
v e r and e θ with resp to θ This kindof termsdoesnotappear ifCartesian ordinates are
in lieuofpolar ordinates
Now,integrating(4.12)-(4.13)yield,
|Ωi| ∂tVi,r + (θB − θA) (rA T ˆ | r,r
rA − rD T ˆ | r,r
rD ) + (rA − rD) ( ˆ T | r,θ
θB − ˆ T | r,θ
θA ) = Z
Ω i
T θ,θ (r, θ) dr dθ , (4.14)
|Ωi| ∂t V i,θ + (θB − θA) (rA T ˆ | r,θ
rA − rD T ˆ | r,θ
rD ) + (rA − rD) ( ˆ T | θ,θ
θB − ˆ T | θ,θ
θA ) = −
Z
Ω i
T r,θ (r, θ) dr dθ (4.15) The ofequation(4.10)with(4.14), and(4.11)with(4.15)issummarizedin thefollowingresult
Proposition 1 The integration-proje proedure andproje gration operation applied tove
equationwrittenin2D polar oordinatesareequivalentifandonlyif thesour etermsare etizedasfollows
Z
Ω i
T θ,θ (r, θ) dr dθ = (θB − θA) (rA − rD)
ˆ
T | θ,θ
θB + ˆ T | θ,θ θA 2 + 1 − θ B − θA
2
sin(θB − θA)
1 − cos(θB − θA)
! (rA − rD) ( ˆ T | r,θ
θB − ˆ T | r,θ
θA ) ,
Z
Ω i
T r,θ (r, θ) dr dθ = (θB − θA) (rA − rD)
ˆ
T | r,θ
θB + ˆ T | r,θ θA 2
− 1 − θB − θA
2
sin(θB − θA)
1 − cos(θB − θA)
! (rA − rD) ( ˆ T | θ,θ
θB − ˆ T | θ,θ
θA )
(4.16)
Trang 9Note that the versionof h term be split into a tered (traditional)term and a
eterm Theexpressionofthis termisnewto thebestofourknowledge Notesp that
it the onentsofthetensorT
4.2 Tools for implementation
Inthis wegathertogether tools that areimportant for implementationof apartor ofthe
fullmodelsystem osedofa tinuityandmomentumequations
∂ t n + ∇ (nV ) = 0 ,
Here, nis the densityperunit mass, V is the velo y and I the unit tensor Both theCartesianversionof system(4.17) and its terpart in 2D polar ordinatesare investigated, andthe resultsobtainedb both methodsare
The ofthemeshusedinCartesian ordinatesarequadrilateralswhiletheyare edonesin2Dpolar ordinatessystem Inthetwo weusethesamenodesto themesh,butweemphasizethatthe
aredierentfromone ordinatessystemto another InFigure2aredisplayedtwo hkindsofmeshes
where the numberof radial Nr = 3 whilethose of azimuthal ones is Nθ = 6 The radialand azimuthal mesh stepsaredenoted b ∆rand∆θ ,sothatforauniformmeshin azimuthal onehas
∆θ = 2 π
N θ
Fig2: Cartesianand polarmeshes
Innitevolumemethodimplementation,weneedtoknowthevalueofareasofmesh Considera
Ωi in2D polar ordinateslo b itsfour nodesA, B, C, andD asinFigure1,themeasure ofthis areaisgivenb ,
|Ωi|r,θ =
r + ∆r 2
Ifthesenodesareusedto a ΩiinaCartesian ordinates,themeasureoftheareaofthis will be
|Ωi|x,y =
r + ∆r 2
Now,b taking∆θ smalli.e ∆θ → 0inequation(4.19),onegets
|Ωi|r,θ ≈ |Ωi|x,y ,
hmakesobviousthe thatforlargeN θ,meshesobtainedinCartesianand2Dpolar ordinatessystems
Trang 10Next,weareinterestedinevaluatingtheintegralofnormalv alongedgesofmesh The kyone
seemstobethose ondingto ededgesasshownin Figure3 Thankstothediv theorem,
I
n dl = 0 ,
we
Z d AB
n dl = Z
AB
n dl ,
h beimmediately b knowningonlythe ordinatesofthenodesAandB
A
B
Fig3: Normals
Wearenow withthe ofn uxes forhyperb equationswritteningeneral
ordinatesin2D.Assumewehaveinourhandan uxpro [3,5,9℄formore
details Thefollowingisapossiblealgorithmthatallowsusto an uxingeneral
ordinatesof Ωi andΩj:
• Write the v quantities of Ωi and Ωj to the orthogonal basis (nij , τ ij ) of the
in boundary ∂Ωij between the Ωi and Ωj, (nij being the outward pointing unit v normaltothe∂Ωij fromthe Ωitothe Ωj,τ ij isanunitv orthogonalton ij) Let
Ωi andΩj betheresultsofthisstep;
• Computetheux Φij with thestatesΩi and Ωj withresp to thein boundary ∂Ωij b using
a hosenn ux[3,5,9℄;
• Pro theuxΦij ontothe Ωi andΩj togetuxesΦi and Φj resp ely, to
Φi = (Φij · ei,r ) ei,r + (Φij · ei,θ) ei,θ ,
Φj = (Φij · ej,r) ej,r + (Φij · ej,θ) ej,θ ,
where(ei,r , e i,θ )isthea eragev basisin the Ωi,(ej,r , e j,θ)isthoseofthe Ωj
2D