Preparation, characterization and gas sensitivity ofpolypyrrole/ g -Fe 2 O 3 hybrid materials § Lina Genga,* , Shihua Wub a Department of Chemistry, Hebei Normal University, Shijiazhuang
Trang 1Preparation, characterization and gas sensitivity of
polypyrrole/ g -Fe 2 O 3 hybrid materials §
Lina Genga,* , Shihua Wub
a
Department of Chemistry, Hebei Normal University, Shijiazhuang 050016, People’s Republic of China
b Department of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
1 Introduction
Organic–inorganic hybridmaterials composedof oxides and
conducting polymers that can synergize or complement the
properties of pure organic and inorganic materials have been
usedinmanyapplications,suchasinelectronics,optics,coating
andcatalysis[1–5].Polymer/ferricoxidehybridsinparticularhave
superiorpropertiestothoseofpurepolymerandferricoxide,with
both magneticand polymerproperties,and havedemonstrated
wideusesinmedicine,biochemistryandindustry[6,7]
Gassensorshavebeendevelopedtomeasuregasconcentration,
monitoremissionsincombustionprocessesandprovidefeedback
control[8].Thestudy oforganic–inorganichybridmaterialsfor
applicationingassensorsisacurrentresearchhotspot,asthese
hybrids can compensate for the drawbacksof single inorganic
sensorswithhighoperatingtemperaturesandlowselectivityand
oforganic sensorswithpoor processability and longresponse–
recoverytime [9,10].Itohetal [11]developeda (PNMA)xMoO3
hybridthinfilmandfoundinevaluatingitsVOC(volatileorganic
compound)– sensingpropertiesthat theselectivityof organic/
MoO3 hybrids can be controlled by modifying the organic components Nardis et al [12]reported that cobalt porphyrin/ tindioxidehassuperiorselectivitytomethanolvaporandlower workingtemperaturesthan pureSnO2.Meanwhile,Hosono and Matsubara [13,14] synthesized a PPy/MoO3 thin film and PPy/ MoO3 pressed pellet and found that PPy/MoO3 materials have better selectivity compared with polar VOCs Suri et al [15]
reported on a PPy/iron oxide material that is sensitivity to humidityandtoN2,O2,CO2andCH4gasesatdifferentpressures Our previousexperimentsconfirmedthatPPy/ZnO,PPy/WO3
andPAni/SnO2hybridsaresuperiortosinglepolymerandoxide sensingmaterialintermsofselectivityandworkingtemperature
[16–18] In this work, PPy/g-Fe2O3 hybrids were prepared by simultaneous gelation and polymerization processes and then characterized by FT-IR, XRD, TG–DTA and HRTEM The gas sensitivities of PPy/g-Fe2O3 hybrids compared topure PPy and
g-Fe2O3underCO,H2,NH3,ethanolandacetoneatmosphereatlow operating temperatures (<1008C) wereevaluated The sensing mechanismofpolypyrrole/g-Fe2O3isalsodiscussed
2 Experimental 2.1 PreparationandcharacterizationofPPy/g-Fe2O3
Pyrrole monomers were distilled under reduced pressure, placedinadesiccatorandstoredat48Cuntiluse.Methoxyethanol was added to Fe(NO3)39H2O in a 100ml round bottom flask
A R T I C L E I N F O
Article history:
Received 7 April 2013
Received in revised form 1 July 2013
Accepted 7 July 2013
Available online 15 July 2013
Keywords:
A Composites
B Sol–gel chemistry
C Differential scanning calorimetry (DSC)
C Thermogravimetric analysis (TGA)
A B S T R A C T Polypyrrole (PPy)/g-Fe2O3 hybrid materials were prepared bysol–gel polymerization in situ and characterizedbyFouriertransforminfrared(FT-IR),X-raypowderdiffraction(XRD),thermogravimetric and differential thermal analysis (TG–DTA) and high-resolution transmissionelectron microscope (HRTEM).ThegassensitivitiesinCO,H2,NH3,ethanoloracetoneatmospheresweredeterminedat308C,
608Cand908C.FT-IRandXRDpatternssuggestthatferricoxideinthehybridswasg-Fe2O3,witha diameterofapproximately5nm.TG–DTAandHRTEManalysesshowedthatdifferentreactantmolar ratios of pyrrole monomer: Fe(NO3)39H2O resulted in different microstructures of g-Fe2O3 and molecularweightsofPPy.AnincreasedamountofFe(NO3)39H2Oincreasedthedegreeofuniformityof themolecularweightofPPyandresultedinachangeofg-Fe2O3microstructurefromgranulartostick particles.TheresultsofgassensitivitiesshowedthatthePPy/g-Fe2O3hybridsexhibitedhighsensitivity
to NH3 at mild operating temperature (<1008C) Furthermore, the sensing mechanism was also discussed
ß2013TheAuthors.PublishedbyElsevierLtd.Allrightsreserved
§
This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-No Derivative Works License, which
permits non-commercial use, distribution, and reproduction in any medium,
provided the original author and source are credited.
* Corresponding author Tel.: +86 311 80787400; fax: +86 311 87881815.
E-mail address: genglina0102@126.com (L Geng).
ContentslistsavailableatSciVerseScienceDirect
j our na l ho me pa g e : w ww e l se v i e r com / l oca t e / m a tr e sbu
0025-5408/$ – see front matter ß 2013 The Authors Published by Elsevier Ltd All rights reserved.
Trang 2containing a magnetic stir bar, and then distilled pyrrole was
addeddropwisetothestirredsolutionforthemolarratioofpyrrole
monomer:Fe(NO3)39H2O=1:3or1:4(theproductsaredenoted
asS1andS2).Thesolutionwascontinuouslystirredandheatedata
slowratetoevaporatethesolvent,andablackpowderprecipitate
wasobtained
Thechemicalreactionequationswereasfollows:
FeðNO3Þ3þ3CH3OCH2CH2OH ¼FeðOCH2CH2OCH3Þ3þ3HNO3
MðORÞnþH2O ¼MðORÞxðOHÞnxþðnxÞHOR
½FeðOCH2CH2OCH3Þ3isabbreviatedasMðORÞn
MOHþHOM¼MOMþH2O
MOR þROM¼MOMþROH
After washing withwaterfollowed byethanol, theproducts
weredriedinanovenandthenannealedatdifferenttemperatures
of1008C,1308C,1508Cor1808C
ThepropertiesofthePPy/ferricoxidehybrids wereanalyzed
using several structural methods: FT-IR (Avatar 360 FT-IR
spectrophotometer), XRD (DMAX-2500 diffractometer with Cu
Karadiationat40kVand100mA),TG–DTA(ZRY-2PSimultaneous
ThermalAnalyzer)andHRTEM(PhilipsT20ST,operatedat200kV)
2.2 Determinationofgassensingcharacteristics
CO,H2,NH3,ethanolandacetonewereselectedfortestingthe
gassensitivityofthematerials.Thedetectionsystemandelectric
circuithave been described in ourpreviously studies [15–17]
Briefly,thematerialswerefabricatedonanaluminumtubewith
Auelectrodesandplatinumwires.ANi–Cralloythroughthetube
wasusedas a heating filament Thevoltage ofthe sensor was
measuredindirectlybyanexternalresistorinthetestingcircuit
Gassensitivity is defined asS=Vg/Va, where Va and Vg are the
voltagesofthesensorinclearairandinthetestgas,respectively
60%
3 Resultsanddiscussion The FT-IR spectra of S1 and S2 annealed at 1508
C were comparedwiththatofPPyintherangeof400–4000cm1(Fig.1
ThecharacteristicbandsofPPywereobservedat1560,1398,1298,
1211,1047,930and790cm1,whichwereclosetothosereported
intheliterature[21]:stretchingvibration(1560cm1)oftheC55C bond,stretchingvibration(1298cm1)oftheC55Cbond,stretching vibration(1211cm1)oftheC–Nbond,andthepyrroleringbonds (1407,1398,1047,930,790cm1).IntheS1(150 8C)andS2(150 8C)
spectra,characteristicpeaksofPPywerealsofoundat1407,1398,
1047,930and790cm1,andtheg-Fe2O3specificbandsappeared
in 681, 578 and 468cm1 In the spectra, the C55O bond in pyrrolidoneatabout1700cm1duetotheoveroxidationofPPy was clearly seen The obvious absorptionpeak at 1390cm1
correspondedtoKBr
TheXRDpatternsrevealedthatthediffractionpeaksoftheS1 andS2samplesannealedatdifferenttemperaturesappearedatthe samecrystalface(Fig.2 Thesepeakswereconsistentwiththose fromtheJointCommitteeonPowderDiffractionStandards(JCPDS) data file (25-1402) and, along withthe FT-IR spectra analysis, indicatedtheironoxideinS1andS2wasg-Fe2O3.Thediffraction
0 10 20 30 40 50 60 70
S2
S1
PPy
Wavelength (nm-1)
Fig 1 FT-IR spectra of PPy, S1 (150 8C) and S2 (150 8C)
0
500
1000
1500
2000
2500
3000
4 3 2 1
2 Theta (deg.)
1.100oC 2.130oC 3.150oC 4.180oC
0 500 1000 1500 2000 2500 3000
4 3 2 1
2 Theta (deg.)
1.100oC 2.130oC 3.150oC 4.180oC
Trang 3intensity increased with increasing annealing temperature,
andtheparticle sizesof S1and S2samplesannealedat 1508C
were5.3nmand4.7nm,respectively,accordingtotheScherrer
formula
TheS1andS2samplesannealedat1008Cwereheatedatthe
rate of 108C/min The TG–DTA curve for S1 showed three
exothermic and twoweight lossprocesses in therange of 20–
5508C(Fig.3a).ThetwopointsofweightlossesintheTGcurve
correspondedtothefirstandsecondexothermicprocessesinthe
DTA curve, while thethird exothermic process had no quality
change.Thesetwoexothermicpeakscoupledwithweightlosses
near2198Cand3088CwerecausedbythedegradationofPPy,as
themolecularweightofPPyinS1wasnotuniform,thesmallforms
degraded first, while the larger onesdegraded later The total
weightlosspercentageofS1(100 8C)was31.9%.Thethird
exother-micpeaknear4418Cwasthecrystalphasetransitionofg-Fe2O3to
a-Fe2O3andthereforecausednoweightloss
Thetwoexothermicpeaksandonepointofweightlossinthe
TG–DTA curve of S2(100 8C) occurred in the range of 20–6008C
(Fig.3b).Thebaseofthefirstexothermicpeaknear2618Cwas
wide,whichspannedthetemperaturerangeofthetwoexothermic
processesnear2198Cand3088CofS1(100 8C).Thisresultcouldbe
explainedbythemolecularweightsofthePPyspeciesinS2(100 8C)
beingclose,andthereforedegradationofPPyappearedcontinuous
duringheating.ThetotalweightlosspercentageofS2(100 8C)was
29%, similar to that of S1(100 8C) As withS2(100 8C), the second
exothermicpeak of S2(100 8C) near 4588Cwasthecrystal phase
transitionofg-Fe2O3toa-Fe2O3,whichdidnotresultinweight loss
Although the percentages of weight loss of S1(100 8C) and S2(100 8C) were similar, the number of exothermic peaks were differentduetodifferencesinmolecularweightsofPPyinthetwo samples (Fig 3a and b) In addition, the phase-transition temperatureofS2(1008C)was178ChigherthanthatofS1(1008C) TheseresultscouldbeexplainedfurtherfromtheTEMandHRTEM micrographs Fig 4a shows the polymer characteristics (i.e., amorphous particles and blurry boundaries) of S1(150 8C), even thoughitwasthehybridofPPyandg-Fe2O3.Thecrystallinesofg
-Fe2O3werenotobviousevenwithHRTEM(Fig.4b),whichwasdue
totheg-Fe2O3beingenwrappedbyPPy(Fig.5
From the TEM and HRTEM micrographs of S2(150 8C), the amorphous polymer,granularandstick g-Fe2O3 particlescould
beseen,and thelengthand widthofthestickformwasabout
200nmand15nm,respectively.Onlyg-Fe2O3diffractionpeaks appearedintheXRDpatternsofS2,indicatingthatthegranular andstickparticleswereallg-typeferricoxide.Thisresultindicates thatthedifferentmolarratiosofpytoFe(NO3)39H2Ocanaffectthe morphologyofironoxide.BrezoiandIon[22]hadreportedthatthe amountofpycouldinfluencethecrystalphaseofironoxideinPPy/ ironoxidehybrids.XiaandWang[23]andHe[24]allreportedthat polymer conformation does influence the crystal shape of inorganic oxide However, these authors did not discuss the specific effectof proportion ofreactants on themorphology of inorganicoxideinthecrystalphase
Fig 3 TG–DTA curves of sample S1 (100 8C) (a) and S2 (100 8C) (b).
Trang 4sensors, and their sensitivities for CO, H2, NH3, ethanol and
acetonegasesweretestedat308C,608Cand908C.PPy/g-Fe2O3
hybridspreparedwithreactantsattwodifferentratiosandfour
annealing temperatures all showed no gas sensitivity to
3000ppmCO,H2,ethanolandacetone at308C,608Cor908C,
butshowed good response to 2000ppmNH3 under thethree
operatingtemperatures.Inaddition,S1andS2showedsimilar
sensitivitycharacteristics
Theresponse–recoverycurvesofS1(150 8C)(Fig.6a)andS2(150 8C)
(Fig.6b)showedthattheyhadgoodreversibleandquickresponse– recoverytimesto2000ppmNH3attheoperatingtemperaturesof
308C,608Cand908C(Fig.6 Theresponseandrecoverytimesof S1(150 8C) were 12–36s and 20–22s, respectively, at different workingtemperatures,and thoseofS2(150 8C) were17–40sand 20–23s.TheresultsshowninFig.6alsosuggestthatthetesting voltageincreasedwhentheNH3gaswasinputted,whichwasdue
to the increase in resistances and decreased conductivities of
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
gas in
3 2
1
Time (s)
1.30oC 2.60oC 3.90oC
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32
gas out
gas in
3 2
1
Time (s)
1.30oC 2.60oC 3.90oC
(b) (a)
Fig 6 Response–recovery curves of S1 (150 8C) (a) and S2 (150 8C) (b) to 2000 ppm NH 3 at different working temperatures.
Fig 5 TEM (a) and HRTEM (b) micrographs of sample S2 (100 8C)
Trang 5S1(150 8C)andS2(150 8C)intheNH3 atmosphere.Thus,thePPy/g
-Fe2O3hybridsshowedcharacteristicsofann-typesemiconductor,
althoughtheycontainedbothp-andn-typesemiconductors.This
findingmaybeattributedtotherelativelyhighcontentofg-Fe2O3
inthehybrids.However,thepureg-Fe2O3preparedasdescribedin
reference [25] showed no gas sensitivity at the operating
temperaturesof308C,608Cor908C,whichwasduetog-Fe2O3
beinganinsulatoratnormaltemperatures
ThesensitivitiesofS1andS2annealedat1008C,1308C,1508C
and1808CunderdifferentconcentrationsofNH3gasesat908C
increasedlinearlywithincreasingconcentrationsofNH3(Fig.7
ThesensitivitycurvesofS1andS2testedat308Cand608Cwere
similarwiththatat908C(datanotshown).Theseresultssuggest
that S1 and S2 based sensors can be used in low operating
temperatures(<1008C)todetecta widetesting rangeNH3 gas
concentrations.OurpreviousstudiesreportedthatPPy/ZnOand
PPy/WO3hadgoodselectivitytoNOxandH2Srespectively,buthad
no sensitivity to NH3 at the high concentration of 2000ppm
[16,26] Therefore, PPy/g-Fe2O3 hybrids can be developed in
furtherapplicationsasNH3selectivitysensors
4 Conclusions
The reactant ratio of pyrrole monomer: Fe(NO3)39H2O and
annealingtemperatureofPPy/g-Fe2O3hybridspreparedbysol–gel
polymerizationinsituwereshown hereto influencetheir
micro-structureandgassensitivity.IncreasingamountsofFe(NO3)39H2O
increased the degree of PPy uniformity and resulted in the
microstructure change of g-Fe2O3 from granular to stick particle
form Furthermore, the PPy/g-Fe2O3 hybrids were all selectively
sensitive to NH3 gas at low temperatures (<1008C) and could
overcometheshortcomingsofthelongresponsetimeofPPyandhigh
operatingtemperatureofg-Fe2O3.Therefore,thehybridspresented
importantandpracticalfeaturesformanufactureofgassensors
Acknowledgment
ThisworkwassupportedbygrantsfromtheNationalNatural
ScienceFoundationofChina(31201305)
AppendixA Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.materresbull.2013 07.020
References
381–394.
512–520.
339–343.
349–354.
277–282.
568–572.