Preparation, characterization and evaluation of catalytic activity of titaniaa Faculty of Chemistry, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam b Faculty o
Trang 1Preparation, characterization and evaluation of catalytic activity of titania
a
Faculty of Chemistry, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam
b
Faculty of Chemistry, Quy Nhon University, Viet Nam
c
Advanced Materials Technology Center, National Center for Technological Progress, Hanoi, Viet Nam
d Department of Environmental Engineering and Biotechnology, Myongji University, Republic of Korea
1 Introduction
Inrecentyears,titaniumdioxidehasbeenwidelyappliedasa
photocatalystinenvironmentaltreatmentfortreatingrecalcitrant
organiccompounds.TherearesomereportsonemployingTiO2/UV
to degrade organic pollutants in aqueous environment [1]
Titaniumdioxidein anataseformhasbandgapenergy(Ebg)of
3.2eV,henceitisonlyactiveunderUVradiation.Becausethereis
only about 3–5% of solar radiation that lies in UV region,
photocatalyticability of titania is limited Therefore, there is a
needofresearchonimprovingtitaniaactivityundervisiblelight
Manyreportsonthisresearchwerepublished[2–6].Mostofthem
concentrated on modifying titanium dioxide using transition
metals(Fe,Cr,Ni,Ag,andCu)andnon-metals,suchasN,SorC
Dependingonmodifyingreagent,whendopingintoTiO2,itcan
leadto(i)decreaseofEbg[7,8];(ii)electrontransferfrommodifying
reagenttoTiO2[9,10];and(iii)surfaceplasmonresonanceformation
[11,12].Allofthesesignificantlyincreasephotocatalyticactivityof
nanoTiO2undersolarradiation.Manystudieshavebeencarriedout
toimprove the photocatalyticactivity by the insertionof noble
metals,anditisfoundthatsilvernanoparticlesmodifiedTiO2has
beenofconsiderableinterestbecauseofitspotentialapplications
SilvercantraptheexcitedelectronsfromTiO2andleavetheholesfor thedegradationreactionoforganicspecies.Italsoresultsinthe extensionoftheirwavelengthresponsetowardthevisibleregion
[13–15] Moreover, silver particles can facilitate the electron excitation by creating a local electric field [16], and plasmon resonance effect in metallic silver particles shows a reasonable enhancementinthiselectricfield[17]
InordertocollectandreusemodifiednanoTiO2,alotofnew synthesismethodsareintroducedandinvestigated.Oneofthese methodsisdispersingonsupport[18,19].Inthisstudy,bentonite wasusedassupport,andAg-TiO2/Bentwassynthesizedbyadding Ag-TiO2solintobentonitesuspension.Theremovalofphenolwas investigatedtoevaluatetherelativephotocatalyticactivityofthe preparedphotocatalystsamples.Thepotentialroutsfor mecha-nisms of phenol photooxidation were proposed and discussed, based on experimentalresultsof phenoldegradationusing Ag-TiO2/Bentundernaturalsolarlight,solarsimulatorandinthedark
2 Materialsandmethods 2.1 SynthesisofAg-TiO2,Ag-TiO2/BentandTiO2/Bent Ag-TiO2wassynthesizedusingsol–gelmethod Amixtureof
22mLisopropylicalcoholand3mLoftetraisopropylorthotitanate solutionwasaddedtothebeaker.Thesolutionwasstirredandkept
at658Cin30min.AgNO3dissolvedin80%CH3COOHsolution(the
A R T I C L E I N F O
Article history:
Received 8 February 2012
Accepted 2 April 2012
Available online 10 April 2012
Keywords:
Titanium dioxide
Silver
Bentonite
Photocatalyst
Visible light
A B S T R A C T
Theaimofthisstudyistoevaluatephenoldegradationcapabilityofsilvermodifiedtitaniumdioxide nanomaterialonbentonitesupport(Ag-TiO2/Bent).Thematerialwassynthesizedasphotocatalystby addingAg-TiO2solintobentonitesuspension.Theexperimentalresultsrevealedthatphotooxidation activityofAg-TiO2/BentwasgreatlyhigherthanthatofAg-TiO2andTiO2/Bent.Thephenolremoval efficiencywas23.25%,35.41%and98.94%forAg-TiO2,TiO2/BentandAg-TiO2/Bent,respectively.The dispersionofsilvermodifiedTiO2onbentonitesupportsignificantlyenhancesphotocatalyticactivity undersolarradiationduetosurfaceplasmonresonanceformationandpreventionofanatase-to-rutile phasetransformation
ß2012TheKoreanSocietyofIndustrialandEngineeringChemistry.PublishedbyElsevierB.V.All
rightsreserved
* Corresponding author Tel.: +84 98 322 2831.
E-mail address: nguyendieucam@hus.edu.vn (T.D.C Nguyen).
ContentslistsavailableatSciVerseScienceDirect
j o urna l hom e pa ge : ww w e l s e v i e r c om/ l o ca t e / j i e c
1226-086X/$ – see front matter ß 2012 The Korean Society of Industrial and Engineering Chemistry Published by Elsevier B.V All rights reserved.
Trang 2addeddropwisely.Afterthat,solutionwaskeptat658Cin5h.The
obtainedAg-TiO2sol wasdried at908C.Thematerial wasthen
calcinedat7008Cin2hwithtemperatureincreasingrateof58C/
min
SynthesisofAg-TiO2/Bent:Ag-TiO2solwasaddeddropwisely
into2%claysuspension(adjustedtopH6.5).Itwasstirredfor48h,
andthendriedat908C.Afterthatitwasthencalcinedat7008Cin
2hwithtemperatureincreasingrateof58C/min
TiO2/Bent was synthesized using theAg-TiO2/Bent synthesis
procedurebutwithoutAgNO3
2.2 Phenoldegradationexperimentalset-up
Take300mLofphenolsolution(100mg/L)in500mLbeaker
For each test, 0.50g catalyst (Ag-TiO2/Bent or TiO2/Bent) was
added.Thesolutionwasstirredandleft15mininordertoachieve
phenoladsorptionequilibrium.Lightsourceinthisexperimentis
naturalsolarlightorsolarsimulator(Newport,USA)
2.3 Analyticalmethods
PhasecompositionofTiO2wasdeterminedbyX-raydiffraction
(XRD) method (D8-Advance 5005) Material surfaces were
characterized by scanning electronic microscopy (SEM) (JEOL
JSM-6500F).LightabsorptioncapabilitywasevaluatedbyUV–vis
absorptionspectroscopy(3101PCShimadzu) Oxidation stateof
elements (Ti and Ag) was revealed using X-ray photoelectron
spectroscopy(XPS)(KratosAxisULTRA).Phenolconcentrationwas
measured by spectrometric method, using 4-aminoantipyrin as
coloring agent at 510nm COD value was determined by
dichromatemethodusingUV–visNovaspecII
3 Resultsanddiscussion
3.1 Materialcharacterization
TheXRDpatternsofthematerialswereshowninFig.1,for2u
diffractionanglesbetween58and708.TheXRDpatternofAg-TiO2
showspeaks at27.338(110), 36.128(101), 41.558(111)and
55.028 (211) which can be attributed to different diffraction
planesofrutileTiO2.Thepeaksat38.058(111),44.348(200)and
64.588(220)canbeattributedtoAg(0).WhendispersingAg-TiO2
onbentonitesupport,therearenopeaksofrutilephaseandAg(0)
ontheXRDpattern.Thisprovesthattheuseofbentonitesupport
haseffectsonphasetransformationofTiO2andthedistributionof
AgonTiO2
FromUV–visabsorptionspectra(Fig.2 itcanbeseenthatafter
beingmodifiedwithAg,TiO2canabsorbradiationinvisibleregion
SEMimages(Figs.3and4)showthatAg-TiO2/Bentconsistsof
TiO2particles(sizeisabout30nm)dispersedonbentonitesurface,
whileAg-TiO2iscomposedofTiO2particlesinbiggersizeandAg
particlesonTiO2surface,whichcausessurfaceplasmonresonance
To determine chemical composition of Ag-TiO2/Bent and oxidationstateofelements,thecatalystwascharacterizedbyXPS ResultsobtainedfromXPSspectrainFig.5showthatAg-TiO2/ BentcontainsTi,Ag,O,Si,andAlelements.PeaksofTi2pareat 464.2and458.8eV.ThisconfirmsthatTiisonlypresentinTi4+
form[20,21].PeaksofO1sisat530.6eV,Si2pisat103.0eVandAl 2pisat75.0eV
PeakofAg(3d)isat367.7eV,whichmeansthatAgisexistedin
Ag(0)form.TherearenopeaksofionAg+.Thus,itcanbesaidthat
Agionsatthesurfacearereducedtosilvermetal.Resultsobtained fromthismethodagreewithreportsofotherauthors[22,23] 3.2 TestsonphotocatalyticactivityofAg-TiO2andAg-TiO2/Bent Datain Table1showthatdispersingsilvermodified TiO2on bentonitesupportgreatlyenhancesphotocatalyticactivityunder solarradiation.Thiscanbeexplainedthatthematerialdispersion
on bentonitesupportpreventsanatase-rutilephase transforma-tion,i.e.,formoftitaniainAg-TiO2sampleisrutilewhilein Ag-TiO2/Bentsampleisanatase(Fig.1 Moreover,particlesizeofTiO2
Fig 2 UV–vis absorption spectra of TiO 2 , Ag-TiO 2 and Ag-TiO 2 /Bent.
Fig 3 SEM image of Ag-TiO 2
Trang 3numberofactivecenters.Anotherfactoristhatphenoladsorption
capacityisimprovedbyusingbentonitesupport
Data in Table 2 show that after 90min, removal efficiency
reaches31.14%whenusingsolarsimulatoraslightsource,whileit
is only7.05% if experimentswere carried outin the dark.The
decreaseofphenolconcentrationinthedarkisexplainedbythe
adsorptionofphenolonthematerial.Thisleadstotheconclusion
thatAg-TiO2/Benthasphotocatalyticactivity
EffectofoxidizingagentH2O2onphenolconversionwasalso
investigated.ExperimentalresultsinTable3indicatethatphenol
decompositionrateincreasessignificantlywhenH2O2ispresent
ThiscanbeexplainedthatthepresenceofH2O2increasesabilityof
formingphotogeneratedelectronsanddecreasesthe
recombina-tion rate of electrons and holes, hence enhancing phenol
decomposition To reassure this observation, experiments on
phenoldecompositionwithH2O2butwithoutAg-TiO2/Bentwere
carried out (Table 3 Experimental results reveal that phenol
removal efficiency decreases significantly (only 14.84% after
90min)ifnoAg-TiO2/Bentisused
Inordertoimprovethereactionratetobesufficientlyhigh,the oxidizingagentH2O2wasusedforfurtherinvestigation.Toprove thatinpresenceofH2O2thedecompositionofphenolusing Ag-TiO2/Bentisstillfollowedphotocatalyticmechanism,experiments werecarriedoutwithandwithoutlightsource.Datashowthatthe phenolconversiondecreasedsignificantlyforexperimentsinthe dark(Table4
Basedonexperimentalresultsofphenoldegradationusing Ag-TiO2/Bentundernaturalsolarlight,solarsimulatorandinthedark,
itcanbeassuredthatAg-TiO2/Bentactsasphotocatalystwithand withoutoxidizingagentH2O2
3.3 DiscussionaboutroleofAgonTiO2/Bentinphenoldecomposition BasingoncharacterizationofAg-TiO2,Ag-TiO2/Bentandteston catalyticactivityofthesematerials,aswellasreferencematerials aboutoxidationoforganiccompoundsusingAg-TiO2catalyst,it canbesuggestedthat modifyingTiO2usingAgcannotdecrease bandgapenergybecauseAgcannotsubstituteTiinTiO2latticedue
tounsuitabilityinsizeofionAg+(128pm)andTi4+(68pm),but agglomerateonTiO2surface[24]
Theoretically,ifbandgapenergyisnotreduced,silvermodified TiO2 is not capable of absorbing visible radiation However, experimentaldatashowthatundersolarsimulator,Ag-TiO2/Bent
is more efficientin degrading phenolthan TiO2/Bent(Table 5
which means that TiO2 modified by Ag can improve catalytic activityofTiO2undersolarradiation
Tofindouta reasonableexplanationofroleofAg-TiO2/Bent, experimentson phenoldegradationwerecarriedoutundertwo light sources: solar simulator and visible light simulator (l>420nm)
DatainTable6showthatAg-TiO2/Bentisactiveinthevisible region However, the activity shows much higher under solar simulatorcomparedtovisiblelightsimulator.Itwouldbelogically suggested that thelow photocatalytic activity in latter case is mostly due to surface plasmon resonance formed only from electronsofAg,becausesilvermodifiedTiO2cannotdecreaseband gapenergy,andvisiblelightsimulatorcannotexciteelectronsfrom valencebandtoconductionband.Incontrast,ifsolarsimulatoror solarlightisemployed,electronscanabsorbUVradiationemitted fromthislightsourcetojumpfromvalencebandtoconduction band.ThereforeelectrondensityinAgparticlesishigher[25].Now, surfaceplasmonresonanceisformedoncatalystsurface,resulting
in the increase of photocatalytic activity Surface plasmon resonance deviates photon directions, making them rebound and come back to the material This enhances the ability of
Fig 5 XPS spectra of Ag-TiO 2 /Bent.
Table 1
Phenol degradation using Ag-TiO 2 and Ag-TiO 2 /Bent with solar simulator as light
source and H 2 O 2 addition.
Table 2 Phenol degradation using Ag-TiO 2 /Bent with solar simulator as light source.
Table 3 Phenol degradation with and without catalyst in presence of H 2 O 2 Time (min) Removal efficiency (%)
H 2 O 2 (4.72 10 2
M)/Ag-TiO 2 /Bent H 2 O 2 (4.72 10 2
M)
Trang 4resonanceisthereasonwhyphotocatalyticefficiencyofTiO2under
solarlightincreases
TiO2modifiedbyAgnotonlyincreaseslightabsorptionability
butalso(i)enhancestheformationoffreeradicals,and(ii)lowers
recombinationrateofelectronsandholesduetothe
agglomera-tionofAgnonTiO2.Althoughtherearemanyresearchesonsilver
modifiedtitania[26–29],theexactmechanismofcatalysisandrole
ofAgisstillindebate.Wehopethatourideacanreasonablygivea
handto elucidate therole of the catalyst in degrading organic
compounds,ingeneral,andphenol,inparticular
4 Conclusions
Ag-TiO2/Bentphotocatalystwassuccessfullysynthesized.The
catalystisactivatedundervisibleradiationduetosurfaceplasmon
resonance formation Ag-TiO2/Bent photocatalyst hashigh
effi-ciencyunder solarradiation Thematerial obtained can absorb
lightinthevisibleregion,openinganewtrendonapplyingthis
catalyst in the treatment of recalcitrant organic compounds in
wastewater
Acknowledgments
Thisprojectwassupported byVietnamNationalFoundation
for Scienceand Technology Development, project number 104
99.153.09
XPS measurement was carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, whichis partially supported bytheU.S Department of Energy under grants DE-FG02-07-ER46453 and DE-FG02-07-ER4647
References
[1] R Thiruvenkatachari, S Vigneswaran, I.S Moon, Korean Journal of Chemical Engineering 25 (2008) 64.
[2] W.C Oh, F.J Zhang, M.L Chen, Journal of Industrial & Engineering Chemistry 16 (2010) 32.
[3] S Shanmugasundaram, M Janczarek, H Kisch, Journal of Physical Chemistry B
108 (2004) 19384.
[4] M.K Seery, R George, P Floris, S.C Pillaib, Journal of Photochemistry and Photobiology A 189 (2007) 258.
[5] A Kubacka, G Colo´n, M Ferna´ndez-Garcı´a, Applied Catalysis B 95 (2010) 238 [6] T Umebayashi, T Yamaki, S Tanaka, K Asai, Chemistry Letters 32 (2003) 330 [7] H.M Coleman, K Chiang, R Amal, Journal of Chemical Engineering 65 (2005) 113 [8] H.J Yun, H.J Lee, J.B Joo, N.D Kim, M.Y Kang, J.H Yi, Applied Catalysis B 94 (2010) 241.
[9] H Irie, T Shibanuma, K Kamiya, S Miura, T Yokoyama, K Hashimoto, Applied Catalysis B 96 (2010) 142.
[10] M.S Nahar, K Hasegawa, S Kagaya, S Kuroda, Science and Technology of Advanced Materials 8 (2007) 286.
[11] Q Zhang, J Wang, S Yin, T Sato, F Saito, Journal of the American Ceramic Society
87 (2004) 1161.
[12] N Sobana, K Selvam, M Swaminathan, Separation and Purification Technology
62 (2008) 648.
[13] P.V Kamat, Journal of Physical Chemistry B 106 (2002) 7729.
[14] M Jacob, H Levanon, P.V Kamat, Nano Letters 3 (2003) 353.
[15] E Bae, W Choi, Environmental Science and Technology 37 (2003) 147 [16] J.M Hermann, H Tahiri, Y Ait-Ichou, G Lossaletta, A.R Gonzalez-Elipe, A Fernandez, Applied Catalysis B 13 (1997) 219.
[17] G Zhao, H Kozuka, T Yoko, Thin Solid Films 277 (1996) 147.
[18] Y Yao, G Li, S Ciston, R.M Lueptow, K.A Gray, Environmental Science and Technology 142 (2008) 4952.
[19] H.M Lin, S.T Kao, K.M Lin, J.R Chang, S.G.g Shyu, Journal of Catalysis 224 (2004) 156.
[20] M Sokmen, D.W Allen, F Akkas, N Kartel, F Acar, Water, Air, and Soil Pollution
132 (2001) 153.
[21] H.M Sung-suh, J.R Choi, H.J Hah, S.M Koo, Y.C Bae, Journal of Photochemistry and Photobiology A 163 (2004) 37.
[22] H.E Chao, Y.U Yun, H.U Xingfang, A Larbot, Journal of the European Ceramic Society 23 (2003) 1457.
[23] P Falaras, I.M Arabatzis, T Stergioulos, M.C Bernard, International Journal of Photoenergy 5 (2003) 123.
[24] L Zhang, J.C Yu, H.Y Yip, Q Li, K.W Kwong, A Xu, P.K Wong, Langmuir 19 (2003) 10372.
[25] J Panpranot, K Kontapakdee, P Praserthdam, Journal of Physical Chemistry B 110 (2006) 8019.
[26] J Liqiang, S Xiaojun, C Weimin, X Zili, D Yaoguo, F Honggang, Journal of Physics and Chemistry of Solids 64 (2003) 615.
[27] N.J Price, J.B Reitz, R.J Madix, E.I Solomon, Journal of Electron Spectroscopy and Related Phenomena 98–99 (1999) 257.
[28] K Kocˇı´, K Mateˇju˚, L Obalova´, S Krejcˇı´kova´, Z Lacny´, D Placha´, L Cˇapek, A Hospodkova´, O Sˇolcova´, Applied Catalysis B 96 (2010) 239.
[29] L Gomathi Devi, K Mohan Reddy, Applied Surface Science 256 (2010) 3116.
Table 4
Phenol and COD removal efficiency under different irradiation with H 2 O 2 addition.
Time (min) Removal efficiency (%)
Table 5
Catalytic activity of TiO 2 /Bent and Ag-TiO 2 /Bent on phenol degradation.
Table 6
Phenol degradation with different light sources.
Vis simulator Solar simulator