1. Trang chủ
  2. » Ngoại Ngữ

advancing tuberculosis drug regimen development through innovative quantitative translational pharmacology methods and approaches

4 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 921,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Theseeffortsarefocusedon optimizing 43 thetranslationofnovelTBdrugsindevelopmentandinformingthe 44 study design and enrichment of complex combination clinical 45 trials Figure1 Thisholis

Trang 1

5 Q1Debra Hanna * , Klaus Romero, Marco Schito

6 Critical Path Institute, 1730 E River Road, Tucson, Arizona 85718, USA

7

8 1 Introduction

9 Q2 In2016,tuberculosis(TB)remainstheleadingworldwidecause

10 ofdeathduetoaninfectiousdisease.Itisaconditionthatimpacts

11 one-thirdoftheworld’spopulationandthereareapproximately

12 Q3 1.5millionTB-relateddeathsworldwideeachyear.1 Thereisno

13 questionthatamoreefficaciousandshorterdurationtherapeutic

14 treatmentforTBisneeded,andthatitsdevelopmentshouldbea

15 globalpriority.However,thedevelopmentofsuchatherapyisa

16 tallorder,giventhatthetreatmentofthisdiseaserequiresa

multi-17 drugregimenandthatthereareissuesrelatedtotolerabilityand

18 theemergenceofresistanceforallTBdrugs.Therefore,anentirely

19 novelmulti-drugregimenisrequiredtoovercomethesebarriers

20 andimprovethelivesofpatientssufferingfromthisdisease

21 Thedevelopmentofthisnovelregimen willrequirearobust

22 drug development pipeline, as well as an improved drug

23 developmentprocesstoadvancethenewtherapeuticcandidates

24 Such a process needs tools to inform critical decisions in the

25 complex regimen development pathway Two exciting new

26 therapeuticadvancementsemergedin 2012and 2014withthe

27 accelerated conditional approvals of both bedaquiline2 and

28 delamanid These novel drugs hold the promise of optimized

29 therapies and outcomesfor patientswiththe mostchallenging

30 drug-resistant forms of the disease, but their utility could be

31 jeopardizedby combiningthemwitholder, lesseffectivedrugs

32 The TB community also hasan opportunity to learn from and

33 improvethedesignofcomplexmulti-drugstudiesbyleveraging

34 thedatafromthreephaseIIIquinolonecontainingtrialsthatfailed

35

tomeettheirexpectedendpoints.3–5

36 Since its inception in 2010, the Critical Path to TB Drug

37 Regimens (CPTR)Initiative, a globalpublic–private partnership,

38 haskeenlyfocusedonacceleratingthedevelopmentofanentirely

39 novel,shorterdurationtherapyforTB.6AcoreelementoftheCPTR

40 strategyisthedevelopment,validation,andrefinementofasuite

41

ofpre-clinical,translationalmethodologiesandquantitativedrug

42 developmentplatforms Theseeffortsarefocusedon optimizing

43 thetranslationofnovelTBdrugsindevelopmentandinformingthe

44 study design and enrichment of complex combination clinical

45 trials (Figure1 Thisholistic approach isdesigned tointegrate

46 learningsfromexperiment-levelandpatient-levelcontemporary

47 data, including pre-clinical and clinical studies These data are

48 integrated using the Clinical Trial Data Interchange Standards

49 Consortium (CDISC) Therapeutic Area Data Standard for TB, as

50 describedinFigure2.7Thisfigurealsodescribesothercomponents

International Journal of Infectious Diseases xxx (2016) xxx–xxx

A R T I C L E I N F O

Article history:

Received 7 October 2016

Accepted 11 October 2016

Corresponding Editor: Eskild Petersen,

Aarhus, Denmark

Keywords:

Tuberculosis (TB)

Modeling

Simulation

Pharmacokinetic/pharmacodynamics

(PK/PD)

Drug development

Translational science

S U M M A R Y

Thedevelopmentofnoveltuberculosis(TB)multi-drugregimensthataremoreefficaciousandofshorter duration requires a robust drug development pipeline Advances in quantitative modeling and simulationcanbeusedtomaximizetheutilityofpatient-leveldatafrompriorandcontemporaryclinical trials,thusoptimizingstudydesignforanti-TBregimens.Thisperspectivearticlehighlightstheworkof sevenprojectteamsdevelopingfirst-in-classtranslationalandquantitativemethodologiesthataimto informdrugdevelopmentdecision-making,doseselection,trialdesign,andsafetyassessments,inorder

toachieveshorterandsafertherapiesforpatientsinneed.Thesetoolsoffertheopportunitytoevaluate multiplehypothesesandprovideameanstoidentify,quantify,andunderstandrelevantsourcesof variability, to optimize translation and clinical trial design When incorporated into the broader regulatorysciencesframework,theseeffortshavethepotentialtotransformthedevelopmentparadigm forTBcombinationdevelopment,aswellasotherareasofglobalhealth

ß2016PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author Tel.: +1 520 382 1406.

E-mail address: dhanna@c-path.org (D Hanna).

ContentslistsavailableatScienceDirect

j o urn a l hom e pa ge : ww w e l s e v i e r c om/ l o ca t e / i j i d

http://dx.doi.org/10.1016/j.ijid.2016.10.008

1201-9712/ß 2016 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases This is an open access article under the CC BY-NC-ND license ( http:// creativecommons.org/licenses/by-nc-nd/4.0/ ).

Trang 2

51 oftheCPTRdatacollaborationprograms,includingthePlatformfor

52 theAggregation of Clinical Trials(TB-PACTS)and TB Relational

53 SequencingDataPlatform(ReSeqTB).8,9Theseintegrateddataare

54 beingusedtodevelopfirst-in-classtranslationalmethodologies,

55 representedbythesevenprojectteamsdescribedbelow

56 2 LearningfromthecollectiveTBdrugdevelopment

57 experiencethroughthemodel-basedmeta-analysisofphaseIII

58 quinoloneclinicaltrials:informingthepathforward

59 CPTR and the World Health Organization (WHO) Global TB

60 ProgrammehaveconvenedleadersofrecentmajorTBclinicaltrials

61 and key subject matter experts This team has reviewed key

62 findings fromthe phase IIItrials of fluoroquinolone-containing

63 shortenedregimens for drug-susceptible TB (OFLOTUB, REMox,

64 Rifaquin)thatwereconductedoverthelastdecade,andintegrated

65 thesefindingsintoTB-PACTS.Theintentistoextractkeylessons

66 fromtheTB-PACTSplatformforfutureTBtrialdesign,including

67 theanalysisofendpointsoftreatmentoutcomefortheselectionof

68 newregimenstobetestedinphaseIIIclinicaltrials,thestatistical

69 methodsfor assessment ofnon-inferiority,the incorporationof

70 pharmacokinetic/pharmacodynamic(PK/PD)parametersinto

pri-71 mary analyses, and the need for improved knowledge of the

72 variability in patient response to treatment The TB-PACTS

73 database will also be used to determine whether there is a

74 predictablelinkagebetweenpathogenloaddynamicsand

clini-75 callyrelevantendpoints inTB clinicaltrials Aframework fora

76 regulatory-oriented disease progression modeling analysis that

77 links pathogen dynamics over time (i.e., biomarker of drug

78 response) with clinicallyrelevant endpoints will be developed

79 Thepathogenloaddynamicsmodelisbeingadvancedtoenablethe

80 additionof a drugbiomarker model andits applicationfor the

81 development ofnewtherapies againstTB Thelinktoclinically

82 relevant endpoints is aimed at optimizing drug development

83 decisions

84

3 Mechanisticsystemspharmacologymodeltolinktarget

85 selectionwithmechanismsofactionandimmuneresponse:

86 improvingdiscovery-to-developmenttranslation

87 GiventhecomplexityofTBdiseaseanddrugtreatmentandthe

88 lack of optimal clinical endpoints, a translational systems

89 pharmacology framework is being developed that integrates

90

insilicomodelsofTBdiseaseprogressionwithimmuneanddrug

91 response This mechanistic model is based on non-clinical and

92 clinicaldata,whichareultimatelyneededtoinformTBtreatment

93 optimizationanddrugdevelopment.Theobjectiveofthisworkis

94

to combine interdisciplinary systems biology and systems

95 pharmacologymodelstoformallycharacterize

drug-host-bacte-96 ria-infectedcellinteractionsduringTBinfection–anessentialstepQ4

Figure 1 CPTR comprehensive approach to optimizing translational understanding of new TB drugs and regimens.

Figure 2 CPTR data collaboration platform.

D Hanna et al / International Journal of Infectious Diseases xxx (2016) xxx–xxx 2

Trang 3

97 towardsmaximizing the efficacyand shortening thetreatment

98 durationofnovelTBregimens(Figure2 Thedirectoutcomeofthis

99 projectisthedevelopmentofatranslationalTBdrugdevelopment

100 platformthatwillserveasatooltooptimizethestudydesignof

101 keypre-clinicalandclinicaltrials,leadingtoasignificantlyshorter

102 drugdevelopmenttimefornewTBregimens

103 4 Pre-clinicalquantitativeexposure–responsemodelingusing

104 theinvitrohollowfibersystemforTB(HFS-TB)toimprove

105 translation

106 Selectingthedrugand dosetoadvancefromthepre-clinical

107 study into early clinical studies is made more complex when

108 includingmultiplenewagents.TheCPTRpartnershipsuccessfully

109 quantifiedthepredictiveaccuracy oftheHFS-TBforsupporting

110 earlydrugdevelopmentanddosing,andqualifiedthistoolwiththe

111 European Medicines Agency (EMA) througha robust

evidence-112 based methodology.10–14 The partnership between the CPTR

113 expertteamandBaylorUniversityisprogressingworkwiththe

114 HFS-TBsystemtoproactivelyassesstheperformanceofnovelTB

115 drugsanddrugregimens

116 5 PhysiologicallybasedpharmacokineticmodelforTBto

117 understandthedistributionofdrugintheTB-infectedlung

118 The Simcyp physiologically based pharmacokinetic (PBPK)

119 platform,15aleadingtoolusedwidelybyindustryandregulators,

120 isintendedtooptimizethedesignofclinicalstudiesformultiple

121 indications CPTR,in partnershipwithSimcyp,developed a

TB-122 specificsetofmodelsandcompoundfilesintendedtoinformthe

123 designoffirst-in-humanstudiesthatwillsimultaneouslyevaluate

124 theexposureandefficacyofnovelanti-TBcombinationregimens

125 ofuptofourdrugs,includingtheirmetabolites.Thiscollectionof

126 modelscomprisesacomprehensivePBPKmodeloftheTB-infected

127 lung(which includesrelevant aspects of drugdistributioninto

128 granulomatouslesions),acompoundlibraryforstandard-of-care

129 drugs(withmetabolites)aswellasrecentlyapproveddrugs,anda

130 virtualSouthAfricanpopulation,whichcapturesrelevantgenetic

131 variants and TB-related physiological changes that affect drug

132 distributionin this population.14 With theintegration of these

133 componentsintoSimcyp version16 (a recognizedand

best-in-134 classmodelingandsimulationplatform),developmentteamsand

135 regulatorsevaluatingnovelTBregimenswillhavearobusttoolto

136 optimizeclinicaltrialdesignforfirst-in-humanaswellasdrug–

137 druginteractionstudies

138 6 Cardiacriskassessmentprogramtoassessincreasedrisk

139 withTBdrugregimendevelopment

140 Drug-inducedtorsadesdepointes(TdP)hasbeenamajorcause

141 for the withdrawal of drugs approved for marketing.16 The

142 potentialforcardiovascularriskisincreasedwhenmultipledrugs

143 mustbecombinedina complexTB drugregimen.17Inorderto

144 optimize predictions of clinically observed electrophysiological

145 effectsofexistingandnovelTBdrugsbasedonpre-clinicaldataon

146 ionchannelactivity,CPTRhaspartneredwithSimcypscientiststo

147 developamodel-basedrisk-stratificationalgorithmwitha

user-148 friendly interface Thisplatform integrates ion channel activity

149 datawithdrugexposureinformation,topredictthepotentialrisk

150 ofdrug-inducedTdPthatexistingandnovelTBdrugsmaypose

151 This tool is intended to optimize the safety decision-making

152 process for TB drug development An in silico modeling and

153 simulation approach that integrates electrocardiogram changes

154 beyondQTprolongationisnowavailableasanactionabletoolfor

155 optimizingthecardiacsafetyassessmentofTBdrugsanddrugsfor

156 otherindications.18Thisapproachallowsfortheoptimizationof

157 earlyscreeningaswellastestingofclinicalscenarios.Pre-clinical

158 andclinicaldevelopmentteamscanusethisquantitative-basedset

159

ofestimatestoinformthesafetyofsingledruganddrugregimen

160 development

161

7 Liquidcultureandquantitativeassessmentof

time-to-162 positivitytosupportthedevelopmentofadiseaseprogression

163 modelandclinicaltrialsimulationtoolforTB

164 Withthedevelopmentofliquidmedia-basedculturemeasures

165

ofpathogenload,thetime-to-detection(TTD),alsoknownas

time-166 to-positivity(TTP), hasemergedasan importantassessment of

167 patient progress during therapy TTP represents the time to

168 detectablegrowthofMycobacteriumtuberculosisinliquidmedia

169 culture.TTPhasseveraltechnicaladvantagesoverothermethods,

170 suchascolony-formingunit(CFU)quantificationfromculturesin

171 solidmedium,includingreducedvariabilityandeasiertechnical

172 requirements In a first stage, this project has developed a

173 structuralmodelthatidentifiesandquantifiesthemostrelevant

174 sources of variability and interpretable parameters for the

175 longitudinal trajectory of TTP In a secondstage, a model that

176 links the interpretable parameters of TTP progression with

177 clinically relevant endpoints in the REMox study is being

178 developed.Thesemodelswillprovideaquantitativeplatformto

179 informdecision-makingwhendevelopmentteamsarefacedwith

180 choosing toadvance novel regimens fromphase II testing into

181 phaseIIItesting

182

8 Populationpharmacokinetic/pharmacodynamic(PK/PD)

183 modelsforstandard-of-careTBregimens

184 Thisproject hasexploredPK/PD data,withtherapeuticdrug

185 monitoringpracticedina‘real-world’clinicalsetting,inorderto

186 optimizedosingforfirst-linedrugsinpatientswithactivedisease

187

An equivalent population PK/PD understanding for second-line

188 drugsforpatientswithactivediseasewillalsobedeveloped.These

189 models will provide quantitative dosing recommendations for

190 first-andsecond-lineTBregimens

191

9 Conclusions

192 ImprovingthetranslationalperformanceofnewTBdrugswill

193

bea foundational elementtoacceleratethedevelopmentof an

194 entirelynovel,shorter-durationregimenforTB.TheCPTRInitiative

195 and its partners are committed to optimizing the design and

196 execution ofstudiestoevaluatenovel TBregimens,bycreating

197 robust quantitative drug development platforms that are fully

198 validated(Figure3 Theseplatformsarebasedontheintegration

199

oflegacyandcontemporarypre-clinicalandclinicaltrialdata.Each

200

of the quantitative drug development platforms described,

201 including a laboratory manual to support in vitro HFS-TB

202 experimentaldesignandexecution,willbemadepublically and

203 freely available to drug developers and to the TB research

204 community

205 The development of these quantitative drug development

206 platforms,togetherwithuser-friendlyinterfaces,isenvisionedto

207 optimize individualized dosing, the design of studies, and

208 mechanisticmodelsofpathophysiologicalprocesses.Withthese

209 tools,theTB drugdevelopment fieldcan enterthetwenty-first

210 centuryandapplysophisticatedtechnologyandresources

211 Modern drug development and medical practice, especially

212 when it relates to global health issues, demands the optimal

213 evidence for treatments, beyond limited empirical evidence

214 providedbyindividualcontrolledtrials.Evidence-basedanalysis

215 mustgofurtherthanthesimplisticstatisticalinferenceforprimary

216 endpointsofindividualtrialsandrequiresdataaggregationand

D Hanna et al / International Journal of Infectious Diseases xxx (2016) xxx–xxx 3

Trang 4

217 correspondinganalysisofmultipletrialswithoutthelimitations

218 imposedbysystematicreviews.Thetoolsdescribedhereofferthe

219 opportunitytoevaluatemultiplehypothesesandincludeamyriad

220 ofdesignstoevaluatesuchhypotheses.Theseplatformsprovidea

221 meanstoidentify,quantify, andunderstand relevantsourcesof

222 variability,andtooptimizetranslationandclinicaltrialdesign

223 Thiseffort,incorporatedintoaregulatorysciencesframework

224 thatallowsarigorousandtransparentregulatoryreviewprocess,

225 has the potential to transform the paradigm not just for TB

226 combinationdrugdevelopment,butalsoforotherareasofglobal

227 health

228 Acknowledgements

229 TheCriticalPathtoTBDrugRegimensprogramissupportedby

230 theBill&MelindaGatesFoundation.TheCPTRprogramwouldlike

231 tothankandacknowledgeallofourcollaborators,includingour

232 partnersatBaylorUniversity,Certera,ColoradoStateUniversity,

233Q5 UniversityofCaliforniaSanFrancisco,andtheUniversityofFlorida

234 References

235 1 World Health Organization Global tuberculosis report 2015 Geneva: WHO;

236 2015, Available at: http://www.who.int/tb/publications/global_report/

237 gtbr15_main_text.pdf (accessed September 27, 2016)

238 2 Cox E, Laessig K FDA approval of bedaquiline—the benefit–risk balance for

239 drug-resistant tuberculosis N Engl J Med 2014;371:689–91 http://dx.doi.org/

240 10.1056/NEJMp1314385

241 3 Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al.

242 Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis N

243 Engl J Med 2014;371:1577–87 http://dx.doi.org/10.1056/NEJMoa1407426

244 4 Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T, et al A

four-245 month gatifloxacin-containing regimen for treating tuberculosis N Engl J Med

246 2014;371:1588–98 http://dx.doi.org/10.1056/NEJMoa1315817

247

5 Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S,

248

et al High-dose rifapentine with moxifloxacin for pulmonary tuberculosis N

249

Engl J Med 2014;371:1599–608 http://dx.doi.org/10.1056/NEJMoa1314210

250

6 Critical Path to Tuberculosis Drug Regimens CPTR Available at: http://

251

www.cptrinitiative.org/(accessed September 27, 2016)

252

7 Tuberculosis Therapeutic Area CDISC Available at: https://www.cdisc.org/

253

tuberculosis-therapeutic-area (accessed September 27, 2016)

254

8 TB Platform for the Aggregation of Clinical Trials C-Path Available at:

https://c-255

path.org/programs/dcc/projects/tb-platform-for-aggregation-of-clinical-tb-256

studies-tb-pacts/(accessed September 27, 2016)

257

9 TB Relational Sequencing Data Platform Available at:

https://platform.reseqt-258

b.org/(accessed September 27, 2016)

259

10 Romero K, Clay R, Hanna D Strategic regulatory evaluation and endorsement of

260

the hollow fiber tuberculosis system as a novel drug development tool Clin

261

Infect Dis 2015;61(Suppl 1) S5-9.

262

11 Gumbo T, Pasipanodya JG, Romero K, Hanna D, Nuermberger E Forecasting

263

accuracy of the hollow fiber model of tuberculosis for clinical therapeutic

264

outcomes Clin Infect Dis 2015;61(Suppl 1) S25-31.

265

12 Gumbo T, Pasipanodya JG, Nuermberger E, Romero K, Hanna D Correlations

266

between the hollow fiber model of tuberculosis and therapeutic events in

267

tuberculosis patients: learn and confirm Clin Infect Dis 2015;61(Suppl 1).

268

S18-24.

269

13 Pasipanodya JG, Nuermberger E, Romero K, Hanna D, Gumbo T Systematic

270

analysis of hollow fiber model of tuberculosis experiments Clin Infect Dis

271

2015;61(Suppl 1) S10-7.

272

14 Gaohua L, Wedagedera J, Small BG, Almond L, Romero K, Hermann D, et al.

273

Development of a multicompartment permeability-limited lung PBPK model

274

and its application in predicting pulmonary pharmacokinetics of

antitubercu-275

losis drugs CPT Pharmacometrics Syst Pharmacol 2015;4:605–13.

276

15 Jamei M Recent advances in development and application of

physiologically-277

based pharmacokinetic (PBPK) models: a transition from academic curiosity to

278

regulatory acceptance Curr Pharmacol Rep 2016;2:161–9.

279

16 Woosley RL, Romero K Assessing cardiovascular drug safety for clinical

deci-280

sion-making Nat Rev Cardiol 2013;10:330–7.

281

17 Woosley RL, Whyte J, Mohamadi A, Romero K Medical decision support

282

systems and therapeutics: the role of autopilots Clin Pharmacol Ther 2016;

283

99:161–4.

284

18 Vicente J, Johannesen L, Mason JW, Crumb WJ, Pueyo E, Stockbridge N, et al.

285

Comprehensive T wave morphology assessment in a randomized clinical study

286

of dofetilide, quinidine, ranolazine, and verapamil J Am Heart Assoc 2015;4 pii:

287

e001615.

Figure 3 CPTR quantitative medicine approach to address key gaps in the TB drug development process.

D Hanna et al / International Journal of Infectious Diseases xxx (2016) xxx–xxx 4

Ngày đăng: 08/11/2022, 15:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN