1. Trang chủ
  2. » Giáo án - Bài giảng

Topic 3 AssetLiability Management (ALM) Required Readings: Peter S.Rose, Chương 6

13 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 76,46 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

1 1 Topic 3 Asset Liability Management (ALM) Required Readings Peter S Rose, Chương 6, 7, 8 Gs Nguyễn Văn Tiến, Chương 9 2 Nội dung  Ý nghĩa của Quản trị theo mô hình ALM  Ảnh hưởng của rủi ro lãi s.

Trang 1

Topic 3

Asset-Liability Management

(ALM)

Required Readings: Peter S.Rose, Chương 6, 7, 8

Gs Nguyễn Văn Tiến, Chương 9

2

Nội dung

 Ý nghĩa của Quản trị theo mô hình ALM

 Ảnh hưởng của rủi ro lãi suất đối với thu nhập

của ngân hàng

 Rủi ro lãi suất: Mô hình Khe hở nhạy cảm lãi

suất và áp dụng khe hở nhạy cảm lãi suất để

lượng hóa tác động của rủi ro lãi suất đến thu

nhập ngân hàng

 Ứng dụng mô hình Thời lượng trong quản trị

ALM

Quản trị Tài sản Nguồn vốn (ALM)

 Khái niệm

 Ý nghĩa

 Xu hướng

Trang 2

Lãi suất hoàn vốn -Yield to Maturity

(YTM)

1 t

t t YTM) (1

CF Price

Market

5

Lãi suất chiết khấu ngân hàng (DR)

Maturity to

Days

#

360

* FV

Price Purchase

-FV

DR =

Trong đó: FV equals Face Value

6

Conversion of DR into YTM

 (100 – purchase price)/Purchase Price *

(365/days to maturity)

Trang 3

Example

 Suppose, a 100$ security is now sold on the

market at price of $96 with days to maturity

of 90 days

 What’s DR, the YTM equivalent yield?

8

Example

0.1690

 PV = -96, FV = 100, N = 90/365, I = ?

 I = 18%

Thu nhập từ lãi ròng (NII) và Thu nhập

từ lãi cận biên (NIM)

exp as

NIM

Totalearning sets

=

NII: Net interest income

Trang 4

Rủi ro lãi suất

 Rủi ro về giá tài sản

 Khi lãi suất tăng lên, làm cho giá trị thị

trường của tài sản hoặc trái phiếu giảm

 Rủi ro tái đầu tư

 Khi lãi suất giảm, tiền lãi từ trái phiếu

coupon, khoản cho vay trả trước sẽ được tái

đầu tư với mức lãi suất thấp hơn

11

Rủi ro lãi suất:

Rủi ro tái đầu tư

dòng tiền từ tài sản hoặc nguồn vốn cần tái tài trợ

(huy động tiếp) chịu một mức lãi suất thay đổi

trong tương lai.

 Với mọi điều kiện khác không đổi, một sự tăng lên về lãi

suất, sẽ làm tăng thêm thu nhập cho ngân hàng đồng thời

cũng làm tăng chi phí ngân hàng.

tĩnh quan tâm đến ảnh hưởng của thay đổi lãi suất

đến thu nhập ròng ngân hàng.

12

Rủi ro lãi suất:

Rủi ro về giá

 Nếu lãi suất thay đổi, thị giá của tài sản và

nguồn vốn sẽ thay đổi

thị giá tài sản và nguồn vốn đối với biến động lãi

suất càng lớn

 Thời lượng GAP xem xét ảnh hưởng của thay

đổi lãi suất đến giá trị thị trường của vốn chủ

sở hữu

Trang 5

Các mô hình lượng hóa rủi ro

13

14

Mô hình tái định giá

 Thu nhập từ lãi ròng hoặc

 Giá trị thị trường của vốn chủ sở hữu

 Là cách tiếp cận theo đó đo lường rủi ro ảnh hưởng đến

mục tiêu thu nhập từ lãi ròng.

 Các cách tiếp cận thông qua phân tích khe hở nhạy cảm

ảnh hưởng đến thu nhập ngân hàng do thay đổi của lãi

suất và cấu trúc của bảng cân đối kế toán.

Tài sản/ Nguồn vốn nhạy cảm hoặc không nhạy cảm với

lãi suất (RSA/RSL vs NRS)

 RSAs/ RSLs are assets or liabilities whose interest return or

cost vary with interest rate movements over the same time

horizon E.g; short term securities.

 RSAt

 Those assets that will mature or reprice in a given time period (t)

 RSLt

 Those liabilities that will mature or reprice in a given time period (t)

 Non rate sensitive (NRS) are assets or liabilities whose

interest return or cost vary with interest rate movements over

the same time horizon E.g; Vault cash

Trang 6

Example on RSAs/RSLs

Assets Liabilities

1 Short term consumer loans (1 year

maturity) 50 Equity Capital (Fixed) 20

2 Long term consumer loans (2 year

maturity) 25 Demand deposits 40

3.Three-month Treasury Bills 30 Passbook savings 30

4 Six-month Treasury Notes 35 Three month CDs 40

5 Three year Treasury Bonds 70

Three month Banker acceptances 20

6 10 year, fixed rate mortgages 20 Six month CP 60

7 30 year, floating rate mortgages

(rate adjusted every nine months)

40 One year time deposits 20 Two year time deposits 40

Within 1 year, Determine the RSAs =? RSLs = ? How’s about NRS for assets and liabilities?

17

Interest rate GAP/ Dollar GAP/

Funding GAP/ Maturity GAP)

(CGAP): measures the

difference between RSA

and RSL over a more

extended period

i i i i i i

NII GAP R RSA RSL R

∆ = ∆

18

Example on Interest sensitive GAP

Days

Assets maturing

or Repricing

within

Liabilities maturing

or Repricing within

Increme ntal Gap

Cummul ative Gap

1 year -5

Trang 7

Example

 A bank makes a $10,000 four-year car loan to a

customer at fixed rate of 8.5% The bank initially funds

the car loan with a one-year $10,000 CD at a cost of

4.5% The bank’s initial spread is 4%.

 What is the bank’s one year gap?

4.00%

20

Example

loan?

 RSA1yr= $0

 RSL1yr= $10,000

 GAP1yr= $0 - $10,000 = -$10,000

 The bank’s one year funding GAP is -10,000

 If interest rates rise (fall) in 1 year, the bank’s margin will

fall (rise)

Other Gap Measurements

Relative

Interest-Sensitive Gap Bank Size

Gap IS Dollar

=

Interest

Sensitivity

Ratio InterestSensitiveLiabilities

Assets Sensitive Interest

=

Trang 8

Asset-Sensitive Bank Has:

 Positive Dollar Interest-Sensitive Gap

 Positive Relative Interest-Sensitive Gap

 Interest Sensitivity Ratio Greater Than

One

23

Liability Sensitive Bank Has:

 Negative Dollar Interest-Sensitive Gap

 Negative Relative Interest-Sensitive Gap

 Interest Sensitivity Ratio Less Than One

24

Factors Affecting Net Interest

Income

 Changes in the level of interest rates

liabilities

interest-bearing liabilities outstanding

 Changes in the relationship between the yields

on earning assets and rates paid on

interest-bearing liabilities

Trang 9

Example

 Consider the following balance sheet:

Asse ts Yie ld Lia bilitie s Cost

Ra te se nsitive $ 500 8.0% $ 600 4.0%

Fix e d ra te $ 350 11.0% $ 220 6.0%

Non e a rning $ 150 $ 100

920

$ Equity 80

$ Tota l $ 1,000 $ 1,000

GAP = 500 - 600 = -100

NII = (0.08 x 500 + 0.11 x 350) - (0.04 x 600 + 0.06 x 220)

NIM = 41.3 / 850 = 4.86%

NII = 78.5 - 37.2 = 41.3

Ex pe cte d Ba la nce She e t for Hypothe tica l Ba nk

26

Examine the impact of the following

changes

 A 1% increase in the level of all short-term

rates?

yields and interest costs such that the rate on

RSAs increases to 8.5% and the rate on RSLs

increase to 5.5%?

 A proportionate doubling in size of the bank?

1% increase in short-term rates

Asse ts Yie ld Lia bilitie s Cost

Ra te se nsitive $ 500 9.0% $ 600 5.0%

Fix e d ra te $ 350 11.0% $ 220 6.0%

Non e a rning $ 150 $ 100

920

$ Equity 80

$ Tota l $ 1,000 $ 1,000

G AP = 500 - 600 = -100

NII = (0.09 x 500 + 0.11 x 350) - (0.05 x 600 + 0.06 x 220)

NIM = 40.3 / 850 = 4.74%

NII = 83.5 - 43.2 = 40.3

Ex pe cte d Ba la nce S he e t for Hypothe tica l Ba nk

With a negative GAP, more liabilities than assets reprice

Trang 10

1% decrease in the spread

Asse ts Yie ld Lia bilitie s Cost

Ra te se nsitive $ 500 8.5% $ 600 5.5%

Fix e d ra te $ 350 11.0% $ 220 6.0%

Non e a rning $ 150 $ 100

920

$ Equity 80

$ Tota l $ 1,000 $ 1,000

G AP = 500 - 600 = -100

NII = (0.085 x 500 + 0.11 x 350) - (0.055 x 600 + 0.06 x 220)

NIM = 34.8 / 850 = 4.09%

NII = 81 - 46.2 = 34.8

Ex pe cte d Ba la nce S he e t for Hypothe tica l Ba nk

NII and NIM fall (rise) with a decrease (increase) in the spread.

Why the larger change?

29

Proportionate doubling in size

Asse ts Yie ld Lia bilitie s Cost

Ra te se nsitive $ 1,000 8.0% $ 1,200 4.0%

Fix e d ra te $ 700 11.0% $ 440 6.0%

Non e a rning $ 300 $ 200

1,840

$ Equity 160

$ Tota l $ 2,000 $ 2,000

GAP = 1000 - 1200 = -200

NII = (0.08 x 1000 + 0.11 x 700) - (0.04 x 1200 + 0.06 x 440)

NIM = 82.6 / 1700 = 4.86%

NII = 157 - 74.4 = 82.6

Ex pe cte d Ba la nce S he e t for Hypothe tica l Ba nk

NII and GAP double, but NIM stays the same.

What has happened to risk?

30

RSAs increase to $540 while fixed-rate assets decrease to

$310 and RSLs decrease to $560 while fixed-rate

liabilities increase to $260

920

$ Equity 80

$

GAP = 540 - 560 = -20

NII = (0.08 x 540 + 0.11 x 310) - (0.04 x 560 + 0.06 x 260)

NIM = 39.3 / 850 = 4.62%

NII = 77.3 - 38 = 39.3

Ex pe cte d Ba la nce She e t for Hypothe tica l Ba nk

Although the bank’s GAP (and hence risk) is lower, NII is also lower.

Trang 11

Changes in Portfolio Composition and

Risk

would try to increase RSAs (variable rate

loans or shorter maturities on loans and

investments) and decrease RSLs (issue

relatively more longer-term CDs and fewer

fed funds purchased)

 Changes in portfolio composition also raise or

lower interest income and expense based on

the type of change

32

Summary of GAP and the Change

in NII

GAP

Change in

Interest

Income

Change in Interest Income

Change in Interest Expense

Change in Net Interest Income

Positive Increase Increase > Increase Increase

Positive Decrease Decrease > Decrease Decrease

Negative Increase Increase < Increase Decrease

Negative Decrease Decrease < Decrease Increase

Zero Increase Increase = Increase None

Zero Decrease Decrease = Decrease None

GAP Summary

Exercise on IS GAP, NII

Assets Liabilities and Equities

Rate sensitive 200 (12%)

Non rate sensitive 400 (11%)

Non earning 100

Total 700

Rate sensitive 300 (6%) Non rate sensitive 300 (5%) Equity 100 Total 700

Q: Determining the GAP? Net interest income? Net interest margin? How

much will net interest income change if interest rates fall by 2%?

What changes in portfolio composition would you recommend to management

if you expected interest rates to increase?

Trang 12

Three problems with IS GAP

35

Duration GAP analysis

with duration

36

Duration and its measurement

1

1

*

n

t t

n

t t

E x p e c te d C F t

Y T M

D

E x p e c te d C F

Y T M

=

=

+

=

+

A loan with annual interest payment @10% for 5 years, the loan principal is $1000.

What is the Duration of the loan if the current market price

is $1000?

How is the loan price vary if the interest rates increase by 1%?

1

D x

+

Trang 13

Net Worth of the bank

NW = − A L

38

Duration GAP

Duration of asset

portfolio – Duration of

bank liabilities

 The bank tries to

manage duration gap

approaching zero

Positive duration gap

Negative duration gap

1

n i

Durationofeachassetxmarketvalue AssetportfolioDuration

Totalmarketvalueofallassets

=

Ngày đăng: 03/11/2022, 22:00

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w