Coupling is performed asynchronously, with each model being assigned its own timestep size.This enables accurate longtimescale predictions to bemadeatthe computational costof theshort ti
Trang 1Contents lists available atScienceDirect
www.elsevier.com/locate/jcp
Duncan A Lockerbya, ∗ , Alexander Patronisa, Matthew K Borgb,
Jason M Reesec
aSchool of Engineering, University of Warwick, Coventry CV4 7AL, UK
bDepartment of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
cSchool of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 August 2014
Received in revised form 16 December 2014
Accepted 20 December 2014
Available online 24 December 2014
Keywords:
Multiscale simulations
Unsteady micro/nano flows
Hybrid methods
Scale separation
Rarefied gas dynamics
Wepresent anewcouplingapproachforthetimeadvancementofmulti-physicsmodels
of multiscale systems This extendsthe method ofE et al (2009) [5] to dealwith an arbitrary number of models Coupling is performed asynchronously, with each model being assigned its own timestep size.This enables accurate longtimescale predictions
to bemadeatthe computational costof theshort timescale simulation.We proposea methodforselectingappropriatetimestepsizesbasedonthedegree ofscaleseparation thatexists betweenmodels.Anumber ofexampleapplicationsare used fortestingand benchmarking, including a comparison with experimental data of a thermally driven rarefiedgasflowinamicrocapillary.Themultiscalesimulationresultsareinveryclose agreementwiththeexperimentaldata,butareproducedalmost50,000timesfasterthan fromaconventionally-coupledsimulation
©2014TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCC
BYlicense(http://creativecommons.org/licenses/by/4.0/)
1 Introduction
Amulti-physicsdescription ofa multiscalesystemisoftenreferredto asa ‘hybrid’model.Influid dynamics,a typical hybridcombines amolecular treatment(a‘micro’model)witha continuum-fluidone(a‘macro’ model),withtheaimof obtaining theaccuracy oftheformer withtheefficiencyofthe latter [1–4].Themicro andmacromodelsgenerallyhave characteristictimescalesthatareverydifferent,whichmeansthattime-accuratesimulationscanbeextremelychallenging: thesizeofthetimesteprequiredtomakethemicromodelstableandaccurateissosmallthatsimulationsoversignificant macro-scaletime periodsareintractable.Ifthesystemis‘scale-separated’,aphysical(asdistinctfromnumerical) approxi-mationcanbemadethatenablesthecoupledmodelstoadvanceatdifferentrates(asynchronously)withnegligiblepenalty
onmacro-scaleaccuracy.Eetal. [5]werethefirsttointroduceandimplementthisconceptinatime-steppingmethodfor coupledsystems,referredtointheclassificationofLockerbyetal. [6]asacontinuousasynchronous(CA)scheme (‘contin-uous’sincethemicroandmacromodelsadvancewithoutinterruption [5]).Inthispaperweextendthisideatomultiscale systemscomprisinganarbitrarynumberofcoupledmodels
* Corresponding author.
E-mail address:duncan.lockerby@warwick.ac.uk (D.A Lockerby).
http://dx.doi.org/10.1016/j.jcp.2014.12.035
0021-9991/©2014 The Authors Published by Elsevier Inc This is an open access article under the CC BY license
Trang 2Fig 1 The continuous asynchronous (CA) coupling scheme extended to multi-model multiscale systems.
2 Extension to multi-model systems
WeconsideranN-modeltimescale-separatedsystem,wheretheithmodelhasacharacteristictimescaleT i,andindexing
isorderedsuchthat
Modeli=1 isthemicromodelandi=N isthemacromodel;modelsi=2 toi=N−1 are‘meso’models.Thedegreeof scaleseparation S i betweenmodeli and i+1 is
S i= T i+1
wherethetolerance Stolrequireseachdistinctmodelofthesystemtobescaleseparatedfromeveryothertosomedegree, for example, Stol= O(10) If this condition is not met, the two models are treated as one, and coupling is performed conventionally
Ingeneraleachmodelcanbeconsideredtohaveitsowntimevariable(t i),andberepresentedby
d X i
dt i = Fi
X(t i)
where X i are the set of variables of the ith model, and Fi is some function of the complete system’s variables, X= {X1,X2, ,X N} It is important to make clearthe distinction between the characteristic timescale ofthe ith model in isolation(T i)andthetimescaleofitsvariableswithinthecoupledsystem;theyare,potentially,completelydifferent
Tosolvethissetofmodels,theindependenttimevariablesmustberelatedtoeachother.Ifalltimevariablesareequal (i.e.t=t1 N) thesystemisconventionallycoupled.However, wecan advancemodelsatdifferentrateswiththephysical modification
where g i is therate that the ith model advances relative to the micro model Thisapproximation provides a means to exchangefinetimescaleresolutionforlongtimescalepredictions,andtheextenttowhichitisvaliddependsonthedegree
ofscaleseparationbetweenmodels,i.e.onthemagnitudeof S i.Forcoupledmodels thatarehighly scaleseparated(S i>
Stol),thesmaller-scalemodelwillremainquasi-equilibrated tothedynamicsofthelarger-scalemodeldespitethephysical modification, and so behave similarly to as in the unmodifiedsystem The aim is thus to represent the scale-separated system(>Stol) withonethatisless,butstillsignificantly,scaleseparated(=Stol):thisishowacceptablevaluesofg i are determined(seebelowforthespecificprocedure).Detailedanalysesoftheerrorassociatedwiththisphysicalapproximation foratwo-modelsystemaregiveninEetal. [5]andLockerbyetal. [6]
Fig 1 provides an illustrationofa numericalimplementationofEq (4)usingdifferenttimestep sizes foreach model, whileexchangingvariablesasifthetimestepswereequivalent(thisisasynchronous coupling).Thetimestepoftheithmodel is
wheret1 isthemicromodeltimestep
The aimofthisasynchronous couplingschemeistomaximisethe totalsimulatedperiod.Thisisdone by maximising thetimestepineachmodelsubjecttothefollowingconstraints:
Trang 3Fig 2 A coupled mass–spring system.
1 ThephysicalapproximationofEq.(4)representsaveryscale-separatedsystembyonethatisless,butstilltoadegree, scaleseparated(i.e.hasascaleseparationofStol).Thisplacesanupperlimitontheamountatimestep ofonemodel canbeincreasedrelativetoanother:
ti≤S i−1
Stolti−1.
2 Thenumerical accuracyissatisfactoryandstabilityguaranteedforeachindividualmodel:
ti≤ t i ,max,
wheret imaxisanestimationofthemaximumtimestepthatispermissibleforeachmodel
Basedontheseconstraintswecansetthetimestepofeachmodelrecursively:
ti=min
ti ,max;S i−1
Stol
ti−1
wheret1= t1,max
Wenowconsideraseriesofexamples.TheexamplesofSections 3–5areusedtoillustratetheeffectiveness,challenges, andshortcomingsofemployingthephysicalapproximationinEq.(4)andapplyingtimesteppingofEq.(6);theexampleof Section6providesademonstrationofanapplicationtohybridcontinuum-molecularmodelling.Note,thereare arangeof numericalmethodsthatcouldbeappliedtothenumerically-stiffsystemsofSections3–5,butwhichcannotbeappliedto thehybridexampleofSection6
3 Example 1: A simple mass–spring system
Aserialmass–spring systemwith N massesandN+1 springsisshownin Fig 2.Thegoverningequationsfortheith
modelare
d
dt
v i
x i
=
m i(ki(xi−1−x i) +k i+1(xi+1−x i))
v i
wherex i and v i arethedisplacement andvelocity oftheithmass(m i)andk i isthe ithspringconstant Acharacteristic timescaleforeachmodelcanbeobtainedfromitsnaturalperiodinisolation:
T i=2π
m i
k i+k i+1
InthisexampleN=5,thespringconstantsareequal,andthe(i+1)thmassis900×heavierthantheithmass,suchthat
Allmodelsarethussignificantlyscale-separated.1
Thecompletesystemofequationsissolvedusingthemidpointmethod(asecond-orderRunge–Kuttascheme),butwith timestepsforeachmodelchosenaccordingtoEq.(6),witht imax=T i/100.
Inthefirstcase,theinitialdisplacementsx i =0 arechosensuchthat,whenthemassesarereleasedfromrest,onlythe slowest eigenmode of thesystem isexcited. Fig 3(a) showsthe response ofthe lightest (m1) and heaviest (m5) masses governedbythemicroandmacromodels,respectively;theanalyticaleigenvaluesolution(thedashedline)is indistinguish-ablefromthe multiscalesolution. Fig 3(b)showsthesolution using Stol=5, whichplaces alessconservativerestriction
onthebalancebetweenaccuracyandefficiency.ForStol=10,themodeladvances81×fasterthanifstandard(synchronous) couplingwereused;forStol=5 itadvances1296×faster
The massesare now initiallydisplaced an equal distanceand thenreleased fromrest; thisexcitesall eigenmodes, to
a degree Fig 4 shows: (a) the response of a meso model (i=3) and(b) the response of the macromodel (i=5,the heaviestmass),forStol=5.Themacrodescriptionisaccurate,whileforthemesomodelonlythelowfrequencyeigenmode
isaccuratelycaptured.Thisexampleillustrates thefundamentaltrade-off requiredinmultiscaling:efficiencyinpredicting macrovariationscanbedramaticallyincreased,butattheexpenseofmicro/mesoscaleresolution
1 For clarity, we have chosen characteristic timescales of the models to increase withi sothat Eq (1) is satisfied without having to change index notation.
Trang 4Fig 3 Normaliseddisplacement response of the lightest and heaviest masses(m1 andm5, respectively) to excitation of the slowest eigenmode The multiscale result (—) and an analytical eigenvalue solution (– –).
Fig 4 Normaliseddisplacement response of (a) the median and (b) the heaviest masses(m3 andm5, respectively) to an equal initial displacement The multiscale result (—) and an analytical eigenvalue solution (– –).
4 Example 2: A Lotka–Volterra system
TheLotka–Volterraequations,invariousforms,havebeenappliedtoanextremelydiverserangeofproblems,spanning economics [7], biology [8]and chemistry [9] Originating fromthe analysisof auto-catalytic chemical reactions [9], the equations arenowmostcommonlyusedto studythe populationdynamicsofcompetingbiologicalsystems,whichis the exampleweconsiderhere
Thepopulationgrowthrateofaspeciesina(sequential)foodchainisasfollows:
d y i
where y i isthepopulationsizeoftheithspecies, r iistheintrinsicdeathrate(intheabsenceofanypreyorpredator), p i
is thepopulationgrowthrateduetothe consumptionoflowerspeciesinthefoodchain,andq i isthedeathratedueto predationfromhigherspeciesinthefoodchain.Theintrinsicdeathrateofeachspeciesdefinesacharacteristictimescalefor that speciesmodel(r i=1/ i),andwhichclassifiesthemodelinthemacro-to-microhierarchy;thisrateincreasesmoving
upthefoodchain.Thus,theApexPredator,atthetopofthefoodchain,hasthehighestintrinsicdeathrate(intheabsence
ofprey),anditspopulationsize, y1,isgovernedbythemicromodel
Table 1 gives parameters for a food-chain example consistingof four species For the initial population sizes Y i the ecosystem is in equilibrium, and the numbers ofeach specieswill remain constant If, however, all plants are removed
(Y4=0),thepopulationsoftheremainingspecieswilleventuallyreducetoextinction. Fig 5showsthepopulationresponse
ofeachspeciesintheecosystem,aspredictedbyastandardnumericalsolution(thedashedline,usedasabenchmark)and themultiscaleapproachusingStol=10 (thesolidline).AsinSection3,timeintegrationisperformedusingasecond-order Runge–Kuttamethod,withtimestepsforeach modelchosenaccordingtoEq.(6),withti max=T i/5.Forthebenchmark solutiont i= t1,max
ThefirstobservationisthattheslowlyvaryingpopulationsizesoftheApexPredatorsandtheHerbivoresarepredicted veryaccuratelybythemultiscalescheme,whichis100×computationallyfasterthanthebenchmarksolution. Fig 6shows the macromodelpredictionusinglessconservativetolerances ontheminimumacceptablescale separation,i.e Stol=2.5 and S =5 (whichare1600× and400×fastertocomputethanthebenchmark,respectively).Asexpected,themultiscale
Trang 5Table 1
Lotka–Volterra parameters for a 4-species food chain.
Trophic level Model i Y i(initial population) r i p i q i
Fig 5 Normalisedpopulation response to the instantaneous removal of Plants The multiscale result (—) and a conventional (benchmark) numerical solu-tion (– –).
Fig 6 NormalisedHerbivore population response to the instantaneous removal of Plants:Stol=10 (—), Stol=5 (– –),Stol=2.5 (–·–), and a benchmark numerical solution (•) Note, for clarity, the benchmark solution is not plotted at every timestep.
solutionconvergestothenumericalbenchmarkasStol isincreased;Stol=10 appearstoprovideaveryaccurateresultfor themacrovariable
However, compared to theother species, thePredators’ population decline israpid,and occursaftersome delay.The delayoccursbecause,initially,thePredators’preyand thePredators’predatorsarebothreducing–onlywhentheirpreyis significantlydiminishedisthereamajorreductioninPredatornumbers.Themultiscaleapproachdoesnotcapture,withany fidelity,theseshorterscalephenomena,andactuallyintroduceserroneousshorttimescaleoscillations.Thisagainhighlights that exploitingscale separationaffordsvery efficientpredictiononlarge timescales,butatthe expenseoffinertimescale resolution.Note,inthiscase,themicromodelpredictionisverygood,becausetheshortscaleresponseonlymanifestsitself
inthemesomodel’svariable
5 Example 3: A lubrication system
Inthissection weconsider air-layerlubricationofa liquidjournalbearing,asdepictedin Fig 7.The airlayer,despite beingthin,cansignificantlyreducetheoveralldragonthebearing,duetothelowerviscosityofairrelativetoliquids.This simpleair-layerlubricationconceptisexploitedinsuper-hydrophobiccoatings,whichhaveachemicalhydrophobicityand
Trang 6Fig 7 Schematic of a liquid journal bearing with a lubricating air layer.
surfacetopologythat,whensubmergedinwater,combinetotrapairpocketsonthesurface.Suchcoatingshaveapplications
inmarinedragreduction [10,11]andforself-cleaningsurfaces [12].Inthecontextofmultiscalemodellingtheyarerelevant becauseoftheverydifferentscalesassociatedwiththeairlayer,externalwater,andthebody/vehicle
The bearingexampleofthissection consistsofasteelcylinder,ofradius R=10 cm,towhichisappliedanoscillatory torque, T.Thecylinderrotateswithin a fixedouter cylindercontaining water;the surfaceofthe innercylinderiscoated withan airlayerofthicknessair=1 μm; andtheannular thickness ofwateris wat=0.1 mm (i.e R wat air); see Fig 7
Thelow-speed,unsteady,incompressibleNavier–Stokesequationsprovidemodelsfortheairlayerandthewater(i.e.the microandmesomodels,i=1 andi=2,respectively):
∂vair
∂t1 = μair
ρair
∂2vair
and
∂vwat
∂t2 = μwat
ρwat
∂2vwat
where r is the radial coordinate fromthe cylinder centre, v is tangential velocity, μ is dynamic viscosity, ρ is density, andthesubscripts‘air’and‘wat’denotetherespectivefluids Giventhat R wat air,thecurvatureofthegeometry can beneglected.The microandmeso modelsarecoupledbytherequirementfortheshearstressandthevelocitytobe continuousattheair–waterinterface(assumingnoslip):
μair
dvair
dr
r=rint
= μwat
dvwat dr
r=rint
and
wheretheradialpositionoftheair–waterinterfaceisrint=R+air.Thewateratthewalloftheoutercylinderisstationary (i.e.thereisnoslip)
Newton’ssecondlawdeterminestheevolutionofthetangential velocityoftheinnercylindersurface (vcyl);thisisthe macromodel(i=3):
∂vcyl
∂t3 = R
I
2πL R2 μair∂vair
∂r
r=R
+ T (t3)
where L isthe lengthofthebearing(into thepage)and I isthemomentofinertia ofthecylinder.The appliedtorqueis
T =Asin(ωt3),where ωistheangularfrequencyand A istheamplitude.Themacromodeliscoupledtothemicromodel through shear stress inthe airlayer atthe cylinderwall (i.e.the termin parenthesisin Eq.(15)) and viano-slip atthe cylinder–airinterface:
See Appendix Aforvaluesofthephysicalparametersusedinthisexample
The characteristictimescalesestimatedforeach modelarethe viscoustimescale (forthetwo fluids),andafractionof thetorqueperiod(forthecylinder):
T1= ρair2air
μ ; T2= ρwat2wat
Trang 7Fig 8 Tangentialvelocityv [m s−1 ] developing in macro timet3[s] for the cylinder wall and the air–water interface Response to an oscillatory cylinder torque.Stol=20 (•),Stol=10 (—), andStol=5 (– –) Note, for clarity, theStol=20 result is not plotted at every timestep.
In thisexample, the disparity intimescales is vast: T3/ 1∼109.For consistency withprevious examples, the midpoint method is used for time-advancement, with timestep sizes determined by Eq (6)(see Appendix A for tmax,) Spatial discretisationofthefluidmodels,i.e.ofEqs.(11)–(12),isperformedusingasecond-ordercentral-differenceapproximation; forthisillustrativeexample,only10gridpointsareusedineachfluidlayer(afinermeshdoesnotsubstantiallychangethe results)
Fig 8showsthe variationofthe velocityofthe cylinderwall,andthevelocity oftheair–water interface, withmacro time The velocity of the cylinder wall is almost 50% higher than that of the air–liquid interface (which would be the approximatevelocityofthecylinderwallifnoairlayerwerepresent);thedragcoefficientofthecylinderinwaterhasbeen reducedbyalmost50%duetothepresenceofthethinairlayer
Hereitisnotpracticaltobenchmarkthemultiscaleresultsagainstaconventionalnumericalsolution(i.e.onewithequal timestepsizes),becauseofthehighcomputationalcosttoobtainthelatter.Instead,andwhatmustbedoneinpractice,is
toshowtheindependenceofthemultiscaleresulttoincreasesin Stol.Thisisakintoagrid-dependencystudy–settinga larger Stol hastheeffectofreducingthedifferencebetweentimestepsizes
Fig 8showsresultsfor Stol=5,10, and 20;theresultsfor Stol=10 and 20 arebarelydistinguishable,indicatingthat
Stol=5 isafairprediction,andStol=10 isaveryaccurateone.Thecomputationalspeed-upaffordedbytheasynchronous timestep coupling is in this caseextremely high: ×9.5·107 (for Stol=5);×1.2·107 (for Stol=10); and×3·106 (for
Stol=20)
Nowweconsiderthesuddenapplicationofaconstanttorque,T =1,tothestationarysystem.Thiscasehighlightsthe potentialdifficultiesinidentifyingcharacteristictimescales.Themacromodel,Eq.(15),doesnothaveaninherenttimescale
intheabsenceofanoscillatorytorque.Inotherwords,inisolation(i.e.withoutairorwater),thecylinderwouldperpetually accelerate inresponseto theconstant torque.In thesecircumstancessome estimate ofthe timescaleof themodelwhen interacting with others, is needed Here we achieve this withan approximation of the acceleration and velocity of the cylinderwallintermsoftheair-layershearstress,andcombinethemtogetatimescale
Intheabsenceofanappliedtorque,theaccelerationofthecylinderwallswillbeproportionaltotheshearstressinthe airlayeratthewall(τwall),andinverselyproportionaltothemomentofinertiaofthecylinder(seeEq.(15)):
∂vcyl
∂t ∝L R3τwall
Ifwe assume a linearvelocity profile inthe airlayer, thevelocity of thecylinder wallwill be proportional tothe shear stressandtheair-layerthickness,butinverselyproportionaltothedynamicviscosity,i.e
vcyl∝ τwallair
DivisionofEq.(19)by (18)givesacharacteristictimescalethatwecanuseinoursimulation:
T3= airρcylR
where ρcyl isthedensityof thesteelcylinder.With theexception ofthismacrotimescale T3,andt3,max=T3/200,all otherparametersarethesameasabove
Fig 9showsthevelocityresponseofthecylinderwallandair–waterinterfacetothesuddenly-appliedconstanttorque Again,calculationsareperformedusingStol=5,10, and 20,withStol=10 providingaresultthatappearstobeinsensitive
tofurtherincreasesofS Thissolutionisachieved×6.5·106fasterthanasolutionusingequaltimesteps.Thecharacteristic
Trang 8Fig 9 Tangentialvelocityv [m s−1 ] developing macro timet3[s]for the cylinder wall and the air–water interface Response to a suddenly-applied constant cylinder torque.Stol=20 (•),Stol=10 (—), andStol=5 (– –) Note, for clarity, theStol=20 result is not plotted at every timestep.
timescale predictedby Eq.(20), T3=78.5 s,is reasonable giventhe observedtimescales Evenso,if thispredictionhad been much different, the main consequence wouldbe that the Stol-independence thresholdwould be different, and the dependencystudymighthaverequiredadditionalsimulationstofindthatthreshold
6 Example 4: A Knudsen compressor
Finally, weconsider therarefiedgas flowbetweentwo reservoirs, heldatdifferent temperatures,connectedby athin cylindricalcapillary:asingle-stageKnudsencompressor,see Fig 10.Rarefactioneffectsinthecapillarytransportgasfrom the cold to the hot reservoir; thiscounter-intuitive phenomenon is thermal transpiration(sometimes known asthermal creep)andwasfirstobservedbyReynolds [13].Theconfigurationshownin Fig 10wasconstructedbyRojas-Cárdenasetal
[14] inordertostudythetransientbehaviourofthermaltranspirationinaclosedsystem;someoftheirexperimentaldata
ispresentedbelow
In terms ofsimulation, thissystemcannot be modelled usingstandard Navier–Stokes equationsand boundary condi-tions, sincethermaltranspirationisathermodynamic non-equilibrium phenomenon [15,16].Ontheother hand,anaccurate gas-kinetictreatmentwouldbecomputationalintractableovertheentiredomain.Totacklethis,wedecomposethesystem intothreecoupledmodels,applyingtheappropriatemodellingassumptionstoeach:thereservoirmodel(macro,i=3);the capillarymodel(meso,i=2);andthegas-kineticmodel(micro,i=1);see Fig 10.Themacromodeldefiningthereservoir pressuresisobtainedfrommassconservationandbyassuminganidealgas:
dp c
dt3 = − R θc
V c m˙(=0),
dp h
dt3 = − θh
θc
V c
V h
dp c
where p ispressure,Risthegasconstant,θ istemperature, V isthereservoirvolume,m is˙ themassflowratealongthe capillary,z isdistancealongthecapillaryfromthecoldtohotreservoir,andthesubscriptsc and h denotethecoldandhot reservoirs,respectively.Note,hereweassumethatthereisnosignificantchangeinmassofgaswithinthecapillary,though thiscaneasilybeaccountedforifnecessary
The meso modelforthehigh-aspect-ratio capillaryisobtainedfromthe continuityequation integratedoverthe cross section:
∂p
∂t2+ R θ
A
∂m˙
where A is the cross-sectional area of the capillary The meso model is coupled to the macro model by the boundary conditions: p=p c, m˙ = ˙m (=0) at z=0; and p=p h at z= , where is the length of the capillary The temperature variationalongthecapillaryisprescribed(usingthesamefitasinRojas-Cárdenasetal. [14])by
θ = θc+ (θh− θc)
e α z−1
e α −1
where αisaconstant
Themicromodel,G,providesameanstoclosetheentiresystem,byrelatingmassflowratetopressureandtemperature:
∂m˙
∂t = G ∂θ
∂ ; ∂p
∂ ; X
Trang 9
Fig 10 Schematic of a multiscale simulation strategy for the single-stage Knudsen compressor experimental configuration of Rojas-Cárdenas et al.[14]
whereX containsinformationregardingthemolecularstructureofthegas,whichisrequiredtoaccuratelymodelthermal transpiration Here,themicro modelG isa spatially-distributedarray oflow-variance deviationalsimulation MonteCarlo (LVDSMC)subdomains(see Fig 10).LV-DSMCisaparticularlyaccurateandlownoisemethodforsimulatingsmalldeviations fromequilibriuminrarefiedgasflows [17,18].Usingmicroparticle-simulationsubdomainstorepresentpointsinthemeso domain is substantially more efficient than modelling the entire channel with a single particle simulation – thisis an applicationof the Internal Multiscale Method (IMM),and readersare referred to [19–21] fora detailed description.The simulatedparticles of each (streamwise periodic)subdomain are forcedby an effectivebody force, which representsthe equivalentpressureandtemperaturegradientoccurringatthatlocationinthemesomodel(thepressureandtemperature arealsoset).Themicromodelisthuscoupledtothemesomodelbythestreamwisepressuregradient,pressure,andmass flowrateateach ofthesubdomainlocations.Forthesimulationswe presenthere, 12subdomainsareused.Foraccuracy, thederivatives inz featuring in Eqs.(22)and (24)are evaluated fromaChebyshev polynomialinterpolation of p and m˙ fromsubdomainlocationscorrespondingtoChebyshev–Gauss–Lobattopoints
Viscousdevelopmentwithinthecross-sectionofthecapillarydefinesthecharacteristictimescaleofthemicromodel
T1= ρR
2
cap
where Rcap isthe capillaryradius and ρ and μare the average initial densityandviscosity ofthe gas.If we assume a quasi-steadyvelocityprofile(whichisonlyvalidfortT1),characteristictimescalesofthemesoandmacromodelcanbe estimatedfromEqs.(22)and (21),respectively:
T2= μ 2
and
T3= μ Vt
p R4
cap
wherep istheaverageinitialpressureandV t isthetotalvolumeofthecombinedreservoirs
TheexperimentsofRojas-Cárdenasetal. [14]wereperformedwithArgongas,aborosilicate(glass)capillaryofcircular cross-sectionwith =52.7±0.1 mm,Rcap=242.5±3 μm connectingtworeservoirsofvolume V c=19.81±0.54 cm3and
V h=14.85±0.40 cm3,heldatθc=301 K andθh=372 K Aheater appliedtothehotreservoirgeneratedatemperature distribution throughthe capillaryfittedby Eq (23), with α =84.82 m−1.Initially, thetwo reservoirs were held atfixed pressure(p=237.7 Pa),allowing thermaltranspirationflowtodevelop;thesystemwas thenclosed,andthepressurein thetworeservoirsallowedtoequilibrate.Note,inagasthatisnon-rarefiedtheinitialstatewouldbetheequilibriumone
WeranmultiscalesimulationsofthisexperimentalconfigurationusingEulertime-stepping,forsimplicity,withtimestep sizeschosenbyEq.(6).Ourcompletesimulationparametersareprovidedin Appendix B
Trang 10Fig 11 Comparisonof experimental data and the multiscale solution, for transient development of a Knudsen compressor; a plot of reservoir pressures versus time Both reservoirs are held at a constant pressure until approximatelyt3=18 s, at which point the reservoirs are instantaneously closed to the environment Experimental data of Rojas-Cárdenas et al [14] (×) and the multiscale simulation (—).
Fig 12 Reservoir pressure versus time for increasing values of Stol : 10 (· · ·); 20 (– –); 30 (–·–); 40 (—).
Fig 11showsthetransientresponseofthepressureineachreservoirafterthesystemisinstantaneouslyclosed;thereis verycloseagreementbetweentheexperimentalmeasurementsandthemultiscalesimulation.Theasymmetryofthefigure around theinitial pressureis causedbythe differentreservoirvolumes(V c>V h).The multiscaleresultisobtainedwith
Stol=10, andrequired theuse oftwelve Intel Xeon X56502.66GHz coresfor 4.13hours (wall-clock time).If thetime stepsweresetequal(i.e.aconventionalsynchronouscoupling)thesimulationwouldhavetakenover20yearsonthesame hardware Infact, thesavingover conventionalmodellingis fargreater thanthis, ifwealso takeinto accountthesaving
Fig 12 showstheimpactofincreasing Stol;asimilarresultisobtainedinallcases,butwithlowernoiseathigherStol This highlights an important generallimitation of multiscalingwith stochastic models (e.g.LVDSMC) orinherently noisy methods (e.g Molecular Dynamics): fewer timesteps means lesssampling, and thus morenoise The trade-off inhybrid (continuum-particle)multiscalingcanthusbesummarised:
fine-scale accuracy↔noise & large-scale prediction.
... data-page="9">Fig 10 Schematic of a multiscale simulation strategy for the single-stage Knudsen compressor experimental configuration of Rojas-Cárdenas et al.[14]... Internal Multiscale Method (IMM),and readersare referred to [19–21] fora detailed description.The simulatedparticles of each (streamwise periodic)subdomain are forcedby an effectivebody force,... thetworeservoirsallowedtoequilibrate.Note,inagasthatisnon-rarefiedtheinitialstatewouldbetheequilibriumone
WeranmultiscalesimulationsofthisexperimentalconfigurationusingEulertime-stepping,forsimplicity,withtimestep sizeschosenbyEq.(6).Ourcompletesimulationparametersareprovidedin