1. Trang chủ
  2. » Luận Văn - Báo Cáo

The drivers of physical demand for gold

50 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề The Drivers Of Physical Demand For Gold
Tác giả Brian M. Lucey, Fergal A. O’Connor, Samuela Vigne, Voxuan Vinh
Trường học Trinity College Dublin
Chuyên ngành Business
Thể loại Research Paper
Thành phố Dublin
Định dạng
Số trang 50
Dung lượng 269,28 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

EvaluatingEstimatorConsistency Hausman1978proposesatestthatevaluatestheknownconsistencyofanestimator eoretically, theprocedureisbasedontheexpectationthatforastandardregressionofthetype:

Trang 1

s e t , o r a m i x t u r e o f b o t h ?

W h i l e m o s t r e s e a r c h e r s f o c u s o n t h e i n fl u e n c e ofmacroeconomi cvariablesonthepriceofgold,thispaperinvestigatestherelationshipb e t w

e e n asetofmacroeconomicvariablesandthephysicaldemandfortheyel lowmetalacrossam u l t i t u d e ofcountries.Differentpaneland non- panelmodelsareusedandtestedforgoodnessoffi t inordertoderiveempi ricalinsightsintothedriversofphysicaldemand.

termyieldsande c o n o m i c unce rtainty, whiletheexac t opposite iso bse rvedfor in du s trial golddemand , whereap o s i t i v e r e l a t i o n s h i

Resultsfortotalgolddemandindicateapositiverelationshipwithshort-p w i t h e c o n o m i c a c t i v i t y i s o b s e r v e d F u r t h e r m o r e , r e s u l t s i n d i

c a t e a r i s i n g l u x u r y demandlinkedtoincreasesinnationalwealth,andt owardsapositiverelationshipbetweeni n v e s t m e n t de man d fo r g o l d an

d b ot h i n fl a t i o n an d e c o n o m i c u n c e rt ai n t y M ore s p e c i fi c a l l y , we b r

e a k a c o m m o n m y t h b y p r o v i n g t h a t g l o b a l i n v e s t o r s p r o t e c t

t h e m s e l v e s f r o m i n fl a t i o n b y i n v e s t i n g intophysicalgoldrat herthanthroughbuyingjewellery.

Keywords:g o l d ; p h ys i c a l d e m a n d

Trang 2

However,theallegedsafetycharacterofgoldistheverydefinitionoftheasset’snature;o n e w o u l d t h i n k t h a t t h i s w o u l d o n l y

t r u l y c o m e t o l i g h t b y m e a n s o f

a physicalinvestmentintogold.Whileindeedanexposuretogoldthroughholdingitinaninvestor’sportfolioisbeneficialformultiplereasons(seeBaurandLucey(2010)andBattenetal

(2014)),therealsafetyofgoldliesinholdingitphysicallyasalastresortassetinextremesituations(StarrandT r a n (2008)).Financialresearchongoldcanb e dividedintod i ff e r e n t categories,eachconsideringdifferentaspectsofthepreciousmetals(O’Connoretal

(2015)).Averypredominantfieldisontherelationshipbetweengoldandinflation;hereanallegedrelationshipisbelievedtoexistbasedongold’sdefinitionasboth:aninternationalcurrencyandaproductionasset.Ifgoldisconsideredtobeaninternationalc u r r e n c y , anincreaseinexpectedinflationwouldleadtoareductionoftheanticipatedpurchasingpower,whichwouldleadtoinvestorsdrivingdowntheirproportionofcasha n d investingold,hencepushingthepriceupwards(Luceyetal

(2016)).Ontheotherhand,ifgoldisconsideredtobearegularasset,thenitspricewouldrisealongsidether a t e ofinflationsincethedefinitionofinflationisthatthedollarpriceofatypicalgoodr i s e s (Jaffe(1989)).Thereactiontoinflationfrominvestorsisthereforeproactivewhilethereactionfromproducersisreactive-

anobviousdifferenceinthebehaviourofdemandshouldthereforebeobservable.Asimilarreasoningcan beappliedforthesafehaventheoryproposedbyBaurandLucey(2010):goldoffers protectiontoinvestorsduringfinancialturmoils,whichshouldpositivelyimpactinvestorsdemandwhileitshould,ifanyt hing , diminishthedemandfromproducerswhoarefacinganeconomicdownturn.Again,adifferentimpactoninvestorandproducerdemandcanbeexpected

Trang 3

540 |

ICUEH2017

canonlybedonebylookingintotheannualsurveysofthepastdecadescomputedbytheGoldFieldsMineralServicesLtdandavailableonlyinphysicalcopiesattheirofficesinL o n d o n

Non-Governmentphysicaldemandforgoldcanbebrokendownintothreedifferentcategories:

specificm odels, we p ro po s e workingw ith d iff e re nt pa ne l a p p

r o a c h e s a n d f o r m a l l y t e s t w h e t h e r o r n o t p o o l e d O r d i n

a r y L e a s t S q u a r e s ( O L S ) procedurescouldaccuratelyfitthedatawhiledeletingcountry-specificeffects

Thechoiceofcountryismadeinregardtothecountry’srelativeimportanceonboththeofferand/

orthedemandmarket ofgold.The following countriesare considered: Australia,C a n a d a , C h i n a , E g y p t , G e r m a n y , I n d i a ,Italy,Japan,M e x i c o , Russia,S a u d i A r a b i a , SouthKorea,Switzerland,Thailand,Turkey,theUnitedKingdomofGreatBritainandNorthernIreland,andfinally,theUnitedStatesofAmerica

Thispapercontributestothefieldbybeingthefirsttolookatphysicaldemandforg o l d , breakingdownthedemandintodifferenttypes.Weworkwithacleanandthoroughmethodologyandderiveinsightfulresultsintotheeffectofmacroeconomicvariablesonthephysicaldemandforgold.Therestofthispaperisorganisedasfollows:Section2offersabriefoverviewofther e l a t e d literature inordertodefendthechoice ofdata,Section3 presentsthemethodology,whileSection4outlinesanddiscussestheempiricalresults.Finally,Section5concludes

Trang 4

2 LiteratureReviewandDataPresentation

FERGALLITERATURE

TheannualGoldFieldsMineralServices(GFMS)surveyspublishedThomsonReutersprovidea n o v e r v i e w o f t h e a m o u n t o f g o l d s u p p l

i e d a n d d e m a n d e d a c r o s s v a r i o u s countriesoverthepastcalendaryear

Plottingthedemandforgoldandsilverrespectively(Figures1)indicatesashiftinthedema nd towardsarisingimportanceoftheinvestmentside,thegraphsarealsorevealingthatjewelleryconsumptionisthemostimportantfactorindemandforphysicalgold

ItshouldbenotedthatFigures1iscomputedtakingintoaccounttheglobaldemandforgold.However,theregressionresultsinthispaperarecomputedconsideringonlyasubsetofcountries,whichwerechosenbecauseoftheirrelativeimportanceoneitherthesupplyorthedemandsideofthegoldmarketrespectively.Thecountriesare:Australia,Canada,China,Egypt,Germany,India,Italy,Japan,Mexico,Russia,SaudiArabia,SouthKorea,Switzerland,Thailand,Turkey,theUnitedKingdomofGreatBritainandNorthernIreland,andfinally,theUnitedStatesofAmerica.WhiletheresearchofStarrandTran(2008)istheonlypaperfocusedonthedriverso f physicaldemandforgold,itisindeedtheonlysourcethatcanbeusedasasteppingstonewhendecidingwhatdatatoconsider.InlinewithStarrandTran(2008),t h e CPI,theGDPandtheexchangeratetotheUSDollarhavebeenconsidered

Figure1:GlobalDemandforGoldbyTypeinTonnes

Trang 5

Thelevelofthenationalequityindiceshavealsobeenconsidered,aswellasbothlongt e r m andshortterminterestratesinordertogetafeelingforthestateoftheunderlyingeconomy.H e r e , t h e s h o r t te rm i n t e r e s t r

a t e s c o n s i d e r e d a re t h e 3 M o n t h s In te rb a n k LendingRate,while10YearsGovernmentBondYieldsareusedasaproxyforlongterminterestrates.ThedatasetisalsoaugmentedwithnarrowmoneysupplyaswellastheEconomicUncertaintyIndexifsuchanindexisavailableforthecountryconsidered

s t i n g proceduret o detectt h e presenceo f possibleheteroscedasticityi n l i n e a r r e g r e s s i o n m o d e l s b y b u i l d i n g u p o n a c l a s s i c

a l r e g r e s s i o n modeloftheform:

whereasetofresidualsuˆcanbeobtained,whileanOrdinaryLeastSquar

esprocedurew o u l d constraintheirmeanvaluetobe0.Inthecasethatthisassumptionmightfail,thevarianceoftheresidualsmightbelinearlyrelatedtoindependentvariablesandthemodelcouldbeexaminedbyregressingthesquaredresidualsontheindependentvariables(B r o o k s (2014)):

Trang 6

H0:αis a2= =αis a p =0 (4)andthereforez t0αis a=αis a1sothatσ t2=

h(αis a1)=σ2isconstant

3.2 EvaluatingEstimatorConsistency

Hausman(1978)proposesatestthatevaluatestheknownconsistencyofanestimator

eoretically,

theprocedureisbasedontheexpectationthatforastandardregressionofthetype:

twoassumptionsaremade:first,thattheconditionalexpectationsofε givenxiszeroandthatεhaveasphericalcovariancematrix.Morespecifica

H=(c

Trang 7

)

Trang 8

e c

ˆ

whereβ cisthecoefficientvectorfromtheconsistentes

Trang 9

wherey itis thedependentvariableandαis a,β1,andβ2are1+K1+K2parameters(Drukker

(2003)).Xitis a(1∗K1

)vectoroftime-varyingcovariatesandZiis a(1∗K2

)vectoroftime-invariantcovariates,whileµ iistheindividualleveleffectanditistheidiosyncr

regression( D r u k k e r (2003)).Adiscussionontheestimatorsoftheco

efficientsofthecovariatesXitandZicanbefoundinWooldridge(2002)andBaltagi(2013)

Assumingthatthereisnoserialcorrelationintheidiosyncraticerrors,orassumingthat ]=0foralls6=t,Wooldridge(2002)relieson

theresidualsobtainedfromare gress ion infirst-differencesoftheform:

y it y it1

yit =(Xit it1 X it1)1it

=X it1it

(11)

Trang 10

where∆isthefirst-differenceoperator(Drukker(2003)).TheWooldridge(2002)p r o

c e d u r e estimatestheparametersβ1byregressing∆y itonXitandobtainsthe

residualse ˆ it.Incasetheitarenotseriallycorrelated,then

5(Drukker(2003)).Wooldridge(2002)therefore

Trang 11

regressestheresidualseˆ itontheirlagsandteststhatthecoefficien

panelcorrelationintheregressiono f eˆ iton eˆ it−1byadjustingthevariance-covariancematrixforclusteringatthepanellevel( D r u k k e r (2003))

iii Q(,

Trang 12

m e ff e c t m o d e l r e l i e s o n t h e followingestimation:

(y it y i )=(1)(xit x i ){(1

)v i(it i )}

(17)

whereθisafunctionofσ v2andσ ε2sothatˆ=1 (Stata

Corporation (2013)) It should be noted that incaseσ v2= 0, implying

Trang 13



Trang 14

it it i

Trang 15

it i

ComprehensiveapplicationexamplesofpaneldatamodelscanbefoundinNaugesandThomas(2003)onwaterconsumption,inGlaserandWeber(2009)ontheeffectofpaststockpric e re turn ontra dingv olum e , in

? on vola tilitydyna m ic s fo r the S& P500,in

Trang 16

leveleffects arecorrelatedwiththevaluesofthelaggedvariabley(Stat aCorporation(2013)).I n ordertotacklethisproblem,thefollowingsec

fpredeterminedande x o g e n o u s covariates.β1andβ2arerespective

(1988)onvectorautoregressioncoefficientsinpanel-data,ArellanoandB o n d (1991)buildtheirmethodologyupontheGeneralisedMethodofMoments(GMM)andproposeaproceduredesignedfordatasetswithmanypanelsbutfewobservation periods,withtheonlyrequirementthatnoautocorrelationispresentintheidiosyncra

ticer r o r s TheGMMestimatorαis aˆisbasedonthesamplemoments

N−1Z0v¯sothat:

ˆ=arg

min(v'Z)A N

(Zv)=

Trang 17

y1'ZA N Zyy1'

ZA N Zy1 (2

2)

Trang 18

stepestimatorαis aˆ2isobtainedbysettingA N=

whereX¯isastacked(T−2)N∗kmatrixofobservationsonx¯ itandthe

alternativechoicesofA Nwillproduceone-stepandtwo-stepestimators.TheprocedureproposedbyArellanoandBond(1991)assuresestimatorconsistencybyr e m o v i n g panel-leveleffectst h r o u g h first-differentiationa n d b y f o r m i n g m o m e n t c o n d i t i o n s derivedfromthefirst-differenceerrorsofEquation21

Duet o i t s a v a i l a b i l i t y i n d i ff e r e n t e c o n o m i c a n d s t a t i s t i

c a l s o f t w a r e p a c k a g e s , t h e procedureproposedbyArellanoandBond(1991)hasbeenwidelyappliedinfinancialresea rc h ExamplescanbefoundinPodreccaandCarmeci(2001)oneconomicgrowth,inCastellsandSol´e-Oll

´e(2005)onregionalallocationofinfrastructureinvestment,inL i u (2006)onfinancialstructure,corporatefinanceandgrowthofmanufacturingfirmsinTaiwan,inNaud

´eandKrugell(2007)ondeterminantsofforeigndirectinvestmentinAfrica,andfinally,inChangetal

(2011)ontherelationshipbetweenmilitaryexpenditureandeconomicgrowth

3.5.2 LinearDynamicPanelDataModelingwithAddition

alMomentCon-ditions

InthelightofpossiblemodellimitationshighlightedbyArellanoandBover(1995),BlundellandBond(1998)proposearelatedestimatortoArellanoandBond(1991)usingadditionalmomentconditionsinassu

ringestimatorconsistencyundertheonlyadditionalconditionthatE=[v i∆yi2]

Trang 19

=0holdsforalliinEquation21.Buildinguponaclassicaldynami cpa

nel-datamodelaspresentedinEquation21,BlundellandBond(1998)arguethatthelagged-

levelinstrumentintheArellanoandBond(1991)estimatorbecomesweak

Trang 20

effectsv itothevarianceoftheidiosyncraticerrori t b e c o m e stoolarge(StataCorporation(2013))

Buildingupont h e w o r k o f A r e l l a n o a n d B o v e r ( 1 9 9 5 ) , B l u n

d e l l a n d B o n d ( 1 9 9 8 ) proposetousemomentsconditionsthatuselaggeddifferencesasinstrumentsforthe levelequationinadditiontothemomentconditionsoflaggedlevelsasinstrumentsforthedifferencedequations-

h e n c e res ulting in a na dditiona l m o m e nt e s tima tor Econo

metrically, theirprocedureresultsinaGMMestimatorαis aˆofthefollowing

´as que z and Royue la ( 2016) on thede te rm ina nts of inte rnational footballsuccess.andfinally,inDaSilvaandCerqueira(2017)onhouseholdelectricitypricesint h e EU

3.5.3 ALinearDynamicPanelDataModelallowingforAutoco rrelationintheIdiosyncraticErrors

Asmentionedabove,ArellanoandBond(1991)proposeone-stepandtwo-stepGMMe s t i m a t o r u s i n g

m o m e n t c o n d i t i o n s r e l y i n g o n l a g g e d l e v e l s o f

Trang 21

t h e d e p e n d e n t

a n d predeterminedvariables.ThisprocedureisaugmentedbyBlundellandBond(1998)who

Trang 22

leveleffectvariancev tt ot h e varianceo f t h e idiosyncratice r r o ri t b e c

o m e stoolarge

Bothproceduresrequirethattherebenoautocorrelationintheidiosyncraticerrors,h e n c e l i m i t i n g t h e r e fi e l d o f a p p l i c a t i o n A l i

n e a r d y n a m i c p a n e l d a t a p r o c e d u r e c a n howeverberespecifiedassuch,thatthecorrelationintheidiosyncraticerrorsfollowsal o w -

exogenousvariablesinx it ,andk2asthe numberofpredermined

variablesinw it inordert o rewrite E qua tion21as asetof T iequationsfor

Trang 24

ˆ

whereZdiis

thematrixoftheGMM-typeinstrumentforthedifferenceequationandZLiisthem a t r i x o f t h e G

SquaresDummyVariable(LSDV)procedureinitiallyproposedbyNickell(1

Trang 25

Formally,anLSDVproceduretransformsEquation21intoamatrixformat:

Trang 26

BuildingupontheexogenousselectionprocedureofBunandKiviet(2003)appliedtounbalancedpanels,Bruno(2005a)proposesamoregeneralapproximationprocedureforthecoefficients inEquation21valid forth

eobservationinterval[0,T].Bruno(2005a)definesaselectionindicato

rr itsuch thatr it= 1if(y it ,x it )isobserved,andr it=0otherwisei n ordertodefine

adynamicselectionrules(r it ,r i,t−1)thatonlyincludesobservationsforwhichboththecurrentvalueandthelaggedvalueareobservable.Formally:

SquaresDummyVariableprocedurecanbefoundinK i v i e t (1995),inKao(1999),andfinally,inBunandCarree(2005)

4 EmpiricalResults

Whilealargeamountofresearchexistsontheimplicationsandtheeffectsofcertainmacroeconomicvariablesonthepriceofgold,onlyoneformalinvestigationexistsonthedriversofphysicalcountrydemandforgold(StarrandTran(2008)).Inordertoprovide

Trang 27

mored e t a i l e d r e s u l t s , t h e d e m a n d f o r g o l d i s b r o k e n d o w n i n

t o d i ff e r e n t c a t e g o r i e s , dependingonthefinalusageofthepreciousmetal

4.1 TotalDemand

Thet o t a l d e m a n d i s t h e a g g r e g a t e d s u m o f g o l d d e m a

n d r e q u i r e d f o r j e w e l l e r y production,investmentpurposes,andindustrialproduction,mainlyinelectronics

Animportantquestionto raiseinthelightofthedataon handistoseehowitshouldb e modelled,theLagrangeMultipliertestbyBreuschandPagan(1979)isusedtotestforlinearmisspecificationinthemodel

ThetestresultsdisplayedinTable1advicetorejectthenullhypothesisandsuggestt h a t t h e varianceo f t h e u n o b s e r v e d fi x e d e ff e

c t s i s differentt h a n 0

-a pooledOLSregressio nmightthereforenotbethe-appropri-atemodeltouse

Ino r d e r t o b u i l d a g o o d m o d e l t h a t fi t s t h e p h y s i c a l g o l d d

e m a n d d a t a o f t h e 17countriesinthesystem,anessentialquestionistounderstandifthedatashouldbefittedinarandomeffect orafixedeffect model,relyingontheHausmanSpecificationTest (Hausman(1978))

Table2

HausmanSpecificationTest:TotalDemandforGold

(b) Fix ed

(B) Rando m

(b-B) Differen ce

Trang 28

(b) Fixed

(B) Rando m

(b-B) Differen ce

p h y s i c a l d e m a n d f o r g o l d a c r o s s countries

Inafirststep,alinearpaneldatamodelisruninwhichthecoefficientsareapproximatedbyafixedeffectsestimator

0.43509 0.12102 -3.60 0.000 -0.6739 -0.19628

-1.5966

0.5160 0

2.53 0.012 0.2603

6

2.11297 lnexchang

e

0.3301

-0.1834 8

-2.11 0.037

-0.1261

-0.00413 syield 0.0452

3

0.0198 1

2.28 0.024 0.0061

4

0.08431 lnequity 0.3714

0

0.1006 6

6

0.57003 lnuncertai

nty

0.3491 6

0.0799 5

2.62 0.010 2.9446

9

21.0091 2

Ngày đăng: 22/10/2022, 14:24

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w