1. Trang chủ
  2. » Luận Văn - Báo Cáo

On solvability of a boundary value problem for singular integral equations

10 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 74,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Southeast Asian Bulletin of Mathematics 2002 26: 235–244 Southeast AsianBulletin of Mathematics : Springer-Verlag 2002 On Solvability of a Boundary Value Problem for Singular Integral Eq

Trang 1

Southeast Asian Bulletin of Mathematics (2002) 26: 235–244 Southeast Asian

Bulletin of Mathematics

: Springer-Verlag 2002

On Solvability of a Boundary Value Problem for

Singular Integral Equations

Nguyen Van Mau and Nguyen Tan Hoa

Hanoi University of Science, Vietnam, 334 Nguyen Trai, Dong Da, Hanoi, Vietnam

AMS Subject Classification: 47G05, 45GO5, 45E05

Abstract.This paper deals with the solvability of boundary value problems for singular in-tegral equations of the form (i)–(ii)

By an algebraic method we reduce the problem (i)–(ii) to a system of linear algebraic equations which gives all solutions in a closed form

Keywords: initial and co-initial operators, singular integral equations, boundary value problem

Introduction

The theory of general boundary value problem induced by right invertible oper-ators were investigated by Przeworska-Rolewicz and has been developed by many other mathematicians (c.f [2], [4]) In this paper, we give an application of this theory to solve the following boundary value problem:

½ðKnþ Kn1KcÞjðtÞ ¼ f ðtÞ; ðiÞ

ðFjKjjÞðtÞ ¼ jjðtÞ; j¼ 0; ; n  1; jjðtÞ A Ker K; if k> 0;

ðG0fÞðtÞ ¼ 0; ðGjRj1 .R0Þ f ðtÞ ¼ 0; j¼ 1; ; n  1 if k< 0; ðiiÞ where Kc is an operator of multiplication by the function cðtÞ; Fj; Gj ð j ¼ 0; ;

n 1Þ are initial and co-initial operators, respectively, and

ðKjÞðtÞ ¼ aðtÞjðtÞ þbðtÞ

pi ð

G

jðtÞ

t tdt; k¼ Ind K:

1 Preliminaries

We recall some notations and results which are used in the sequel (see [2], [4])

Trang 2

Let G be a simple regular closed arc in complex plane and let X ¼ HmðGÞ ð0 < m < 1Þ Denote by Dþ the domain bounded by G (assume that 0 A Dþ) and

by D-its complement including the point at infinity The set of all linear operators with domains and ranges contained in X will be denoted by LðX Þ Write L0ðX Þ :¼

fA A LðX Þ : dom A ¼ X g

Let RðX Þ be the set of all right invertible operators belonging to LðX Þ For

D A RðX Þ, we denote by RDthe set of all its right inverses

An operator F A LðX Þ is said to be an initial operator for an operator D A RðX Þ corresponding to a right inverse R of D if

F2 ¼ F ; Fðdom DÞ ¼ Ker D; FR¼ 0:

Denote by FD the set of all initial operators for D A RðX Þ

The following fact is well-known:

F A LðX Þ is an initial operator for D A RðX Þ corresponding to R A RD if and only if F ¼ I  RD on dom D

Let LðX Þ be the set of all left invertible operators belonging to L0ðX Þ For

V A LðX Þ, we denote by LV the set of all its left inverser

If V A LðX Þ and L A LV then the operator

G :¼ I  VL

is called the co-initial operators for V corresponding to L A LV

Denote by GV the set of all co-initial operators for V A LðX Þ

Lemma 1 (see [2]) Let A; B A LðX Þ, Im A H dom B, Im B H dom A Then equa-tion ðI  ABÞx ¼ y hassolutionsif and only if ðI  BAÞu ¼ By doesand there is one-to-one correspondence between the two sets of solutions, given by

u¼ Bx $ x ¼ y þ Au:

2 The Results

Let

ðKjÞðtÞ :¼ aðtÞjðtÞ þbðtÞ

pi ð

G

jðtÞ

t tdt;

where aðtÞ; bðtÞ A X , a2ðtÞ  b2ðtÞ ¼ 1, 0 0 k ¼ Ind K

Denote

ðR0jÞðtÞ :¼ aðtÞjðtÞ bðtÞZðtÞ

pi ð

G

jðtÞ ZðtÞðt  tÞdt;

where

ZðtÞ ¼ eGðtÞtk=2; GðtÞ ¼2pi1

ð

G

ln tk aðtÞbðtÞ aðtÞþbðtÞ

t t dt:

Trang 3

It is known that (see [2], [4])

i) If k> 0 then K is right invertible and

RK¼ fR ¼ R0þ ðI  R0KÞT : T A L0ðX Þg:

Let F0; ; Fn1be given initial operators for K corresponding to R0; ; Rn1A

RK, where

Rj¼ R0þ ðI  R0KÞTj ð j ¼ 1; ; n  1Þ; T1; ; Tn1 AL0ðX Þ: ð1Þ ii) If k< 0 then K is left inverbible and

LK¼ fR ¼ R0þ TðI  KR0Þ : T A LðX Þ; dom T ¼ ðI  KR0ÞX g:

In this case, let G0; ; Gn1be given co-initial operators for K corresponding to

R0; ; Rn1A LK, where

Rj¼ R0þ TjðI  KR0Þ ð j ¼ 1; ; n  1Þ; T1; ; Tn1ALðX Þ: ð2Þ Lemma 2.If k> 0, then

ðF0jÞðtÞ ¼X

k1

k¼0

ukðjÞckðtÞ on X ;

where ckðtÞ ¼ bðtÞZðtÞtk ðk ¼ 0; ; k  1Þ and ukðjÞ ðk ¼ 0; ; k  1Þ are linear functionalswhich are defined by

ukðjÞ ¼ 1

2pi ð

G

tk1k

eGðtÞ jðtÞ  1

pi ð

G

jðt1Þ

t1 tdt1

where GðtÞ isa boundary value of the function GðzÞ in D

Proof.We have

ðF0jÞðtÞ ¼ ½ðI  R0KÞjðtÞ

¼ jðtÞ  a2ðtÞjðtÞ aðtÞbðtÞ

pi ð

G

jðtÞ

t tdt

þbðtÞZðtÞ pi ð

G

1 ZðtÞðt  tÞ aðtÞjðtÞ þ

bðtÞ pi ð

G

jðt1Þ

t1 tdt1

dt

¼ jðtÞ  a2ðtÞjðtÞ aðtÞbðtÞ

pi ð

G

jðtÞ

t tdt

þ bðtÞZðtÞ 1

pi ð

G

jþðtÞ dt

XþðtÞðt  tÞ

1 pi ð

G

jðtÞ dt

XðtÞðt  tÞ

;

On Solvability of a Boundary Value Problem for Singular Integral Equations 237

Trang 4

where jþðtÞ ¼1

2½ðI þ SÞjðtÞ, jðtÞ ¼1

2½ðI þ SÞjðtÞ, XþðtÞ ¼ eG þ ðtÞ, XðtÞ ¼

tkeGðtÞ

(GþðtÞ; GðtÞ are boundary values of the function GðzÞ in Dþ; D, re-spectively)

On the other hand

1

pi

ð

G

jþðtÞ dt

XþðtÞðt  tÞ

1 pi ð

G

jðtÞ dt

XðtÞðt  tÞ

¼ j

þðtÞ

XþðtÞ

1 pi ð

G

jðtÞtkdt

eG  ðtÞðt  tÞ

¼ j

þðtÞ

XþðtÞ

tk

pi ð

G

jðtÞ dt

eGðtÞðt  tÞ

Xk1

k¼0

tk

pi ð

G

tk1kjðtÞ

eGðtÞ dt

¼ j

þðtÞ

XþðtÞþ

jðtÞ

XðtÞ

Xk1

k¼0

tk

pi ð

G

tk1kjðtÞ

eG  ðtÞ dt

¼bðtÞ

ZðtÞjðtÞ þ

aðtÞ ZðtÞpi ð

G

jðtÞ

t tdt

Xk1

k¼0

tk

pi ð

G

tk1kjðtÞ

eG  ðtÞ dt:

Hence

ðF0jÞðtÞ ¼X

k1

k¼0

bðtÞZðtÞtk

2pi ð

G

tk1k

eGðtÞ jðtÞ  1

pi ð

G

jðt1Þ

t1 tdt1

dt:

By similar arguments, we obtain the following result:

Lemma 3.If k< 0, then

ðG0jÞðtÞ ¼ X

jkj1

k¼0

vkðjÞckðtÞ on X;

where ckðtÞ ¼ bðtÞtk ðk ¼ 0; ; jkj  1Þ and vkðjÞ ðk ¼ 0; jkj  1Þ are linear functionalsdefined by

vkðjÞ ¼ 1

2pi ð

G

tjkj1keGðtÞ jðtÞ

ZðtÞ

1 pi ð

G

jðt1Þ dt1

Zðt1Þðt1 tÞ

where GðtÞ isa boundary value of the function GðzÞ in D

In the sequel, for every function cðtÞ A X , we write

ðKjÞðtÞ ¼ cðtÞjðtÞ:

Trang 5

Consider singular integral equation of the form

½ðKnþ Kn1KcÞjðtÞ ¼ f ðtÞ; ð5Þ with mixed boundary conditions

iÞ ðFjKjjÞðtÞ ¼ jjðtÞ; jjðtÞ A Ker K; j¼ 0; ; n  1 if k> 0;

iiÞ ðG0fÞðtÞ ¼ 0; ðGjR0 .Rj1fÞðtÞ ¼ 0; j¼ 1; ; n  1 if k< 0; ð6Þ where fðtÞ; cðtÞ A X ; Fj; Gjð j ¼ 0; ; n  1Þ are defined by (1) and (2), respec-tively, 1< n A N

Theorem 1.Suppose that1þ cðtÞaðtÞ G cðtÞbðtÞ 0 0 for all t A G Then every solu-tion of the problem(5)–(6) can be found in a closed form

Proof

Let k> 0, we have K A RðX Þ

Hence, the equation (5) is equivalent to the equation

jðtÞ ¼ ðR0 .Rn1Kn1KcjÞðtÞ þ ðR0 .Rn1fÞðtÞ þ ðR0 .Rn2zn1ÞðtÞ

þ þ ðR0z1ÞðtÞ þ z0ðtÞ;

where z0ðtÞ; ; zn1ðtÞ A Ker K are arbitrary

Thus, the problem (5)–(6) is equivalent to the equation

jðtÞ ¼ ðR0 .Rn1Kn1KcjÞðtÞ þ ðR0 .Rn1fÞðtÞ þ ðR0 .Rn2jn1ÞðtÞ

þ þ ðR0j1ÞðtÞ þ j0ðtÞ;

i.e

½ðI þ R0 .Rn1Kn1KcÞjðtÞ ¼ f1ðtÞ; ð7Þ where

f1ðtÞ ¼ ðR0 .Rn1fÞðtÞ þ ðR0 .Rn2jn1ÞðtÞ þ þ ðR0j1ÞðtÞ þ j0ðtÞ:

By the Taylor-Gontcharov formula for right invertible operators (see [4]), (7) is iquivalent to the equation

2

4

0

@Iþ R0 I F1X

n1

k¼2

R1 .Rk1FkKk1

!

Kc

1 Aj

3 5ðtÞ ¼ f1ðtÞ: ð8Þ

By lemma 1, in order to solve the equation (8) it is enough to solve the equation

On Solvability of a Boundary Value Problem for Singular Integral Equations 239

Trang 6

Iþ KcR0 F1KcR0X

n1

k¼2

R1 .Rk1FkKk1KcR0

! c

ðtÞ ¼ gðtÞ;

where

gðtÞ ¼ I F1X

n1

k¼2

R1 .Rk1FkKk1

!

Kcf1

ðtÞ:

Rewrite this equation in the form

Iþ KcR0 F1KcR0X

n1

k¼2

R1 .Rk1FkKk1KcR0

!

KZf

ðtÞ ¼ gðtÞ; ð9Þ

where fðtÞ ¼ cðtÞ=ZðtÞ

From lemma 2, we have

ðFkKk1KcR0KZfÞðtÞ ¼X

k1

j¼0

ujkðfÞcjðtÞ; k¼ 1; ; n  1;

where ujkðfÞ ¼ uj½ðI  TkKÞKk1KcR0KZf; ujðjÞ; cjðtÞ ð j ¼ 0; ; k  1Þ are defined by (3)

Hence, (9) is of the form

ðMfÞðtÞ X

n1

k¼1

Xk1

j¼0

ujkðfÞcjkðtÞ ¼ gðtÞ; ð10Þ

where cj1ðtÞ :¼ cjðtÞ, cjkðtÞ ¼ ðR1 .Rk1cjÞðtÞ ðk ¼ 2; ; n  1Þ, j ¼ 0; ;

k 1 and

ðMfÞðtÞ :¼ ½1 þ cðtÞaðtÞZðtÞfðtÞ cðtÞbðtÞZðtÞ

pi ð

G

fðtÞ

t tdt: ð11Þ Write this equation in the form

ðMfÞðtÞ X

q

k¼1

~

ukðfÞ ~ckðtÞ ¼ gðtÞ; ð12Þ

where q¼ kðn  1Þ, f~u1ðfÞ; ; ~uqðfÞg is a permutation of fujkðfÞ; j ¼ 0; k  1;

k¼ 1; ; n  1g and f ~c1ðtÞ; ; ~cqðtÞg is obtained by this permutation from the set of functionsfc ðtÞ; j ¼ 0; ; k  1; k ¼ 1; ; n  1g

Trang 7

ðNfÞðtÞ :¼½1 þ aðtÞcðtÞfðtÞ þ

cðtÞbðtÞZ 1 ðtÞ pi

Ð

G fðtÞ

Z 1 ðtÞðttÞdt

1 þ aðtÞcðtÞ2 c2ðtÞb2ðtÞZðtÞ ; where

Z1ðtÞ ¼ ZðtÞeG1 ðtÞtk1 =21 þ aðtÞcðtÞ2 b2ðtÞc2ðtÞ1=2

;

G1ðtÞ ¼ 1

2pi ð

G

lntk 1GðtÞ

t t dt;

GðtÞ ¼1þ aðtÞcðtÞ þ bðtÞcðtÞ

1þ aðtÞcðtÞ  bðtÞcðtÞ; k1¼ Ind GðtÞ:

If k1¼ 0, then M is invertible and M1¼ N Hence, the equation (12) is equivalent to the equation

fðtÞ X

q

k¼1

~

ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ: ð13Þ

Without loss of generality, we can assume that fðN ~ckÞðtÞgk¼1; q is a linearly independent system Then every solution of (13) can be found in a closed form by means of the system of linear algebraic equations

~

ujðfÞ X

q

k¼1

ajku~kðfÞ ¼ ~ukðNgÞ; j¼ 0; ; q;

where ajk¼ ~ujðN ~ckÞ; k; j ¼ 1; ; q

If k1> 0, then M is right invertible and N is a right inverse of M Hence, the equation (12) is equivalent to the equation

fðtÞ X

q

k¼1

~

ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ þ yðtÞ;

where yðtÞ A Ker M is arbitrary

We now can solve this equation by the same method as for the equation (13), i.e every its solution can be found in a closed form

If k1< 0, then M is left invertible and N is a left inverse of M Hence, the equation (12) is equivalent to the system

fðtÞ X

q

k¼1

~

ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ;

ð

G

gðtÞ þP

q k¼1

~

ukðfÞ ~ckðtÞ

Z1ðtÞ t

n1dt¼ 0; n¼ 1; ; jk1j;

8

>

>

<

>

>

:

On Solvability of a Boundary Value Problem for Singular Integral Equations 241

Trang 8

fðtÞ X

q

k¼1

~

ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ;

Xq

k¼1

bnku~kðfÞ ¼ fn; n¼ 1; ; jk1j;

8

>

>

>

>

ð14Þ

where

fn¼  ð

G

gðtÞtn1dt

Z1ðtÞ ; bnk¼

ð

G

~

ckðtÞtn1

Z1ðtÞ dt:

Without loss of generality, we can assume that fðN ~ckÞðtÞgk¼1; q is a linearly independent system Every solution of (14) can be found in a closed form by means of the system of linear algebraic equations

~

ujðfÞ X

q

k¼1

ajku~kðfÞ ¼ ~ujðNgÞ; j¼ 1; ; q;

X

q

k¼1

bnku~kðfÞ ¼ fn; n¼ 1; ; jk1j;

8

>

>

>

>

where akj¼ ~ukðN ~cjÞ, k; j ¼ 1; ; q

Thus, every solution of the equation (12) can be found in a closed form Due to the result of Lemma 1, every solution of the problem (5)–(6) is defined

by the formula

jðtÞ ¼ ðR0KZfÞðtÞ þ f1ðtÞ;

where fðtÞ is a solution of the equation (12), i.e every solution of the problem (5)– (6) can be found in a closed form

Let k< 0, we have K A LðX Þ

The Taylor-Gontcharov formula for left invertible operators (see [4]) and (6) together imply

½ðI  KnRn1 .R0Þ f ðtÞ ¼ ðG0fÞðtÞ þ X

n1

k¼1

KkGkRk1 .R0

! f

ðtÞ ¼ 0; i.e

fðtÞ ¼ ½ðKnRn1 .R0Þ f ðtÞ:

Hence, the problem (5)–(6) is equivalent to the equation

½ðKnþ Kn1KÞjðtÞ ¼ ðKnRn1 .R fÞðtÞ;

Trang 9

½ðK þ KcÞjðtÞ ¼ ðKRn1 .R0fÞðtÞ: ð15Þ

If jðtÞ is a solution of (15) then

ðG0KcjÞðtÞ ¼ ðG0KRn1 .R0fÞðtÞ  ðG0KjÞðtÞ ¼ 0;

Thus, (15) is equivalent to the system

½ðI þ R0KcÞjðtÞ ¼ f2ðtÞ;

ðG0KcjÞðtÞ ¼ 0;



ð16Þ

where f2ðtÞ ¼ ðRn1 .R0fÞðtÞ

From Lemma 3,ðG0KcjÞðtÞ ¼ 0 if and only if

vkðKcjÞ ¼ 0; k¼ 0; ; jkj  1;

where vkðjÞ ðk ¼ 0; ; jkj  1Þ are defined by (4)

Hence, the system (16) is equivalent to the system

½ðI þ R0KcÞjðtÞ ¼ f2ðtÞ;

vkðKcjÞ ¼ 0; k¼ 0; ; jkj  1:



Consider the system of equations

½ðI þ KcR0ÞcðtÞ ¼ ðKcf2ÞðtÞ;

vkðcÞ ¼ 0; k¼ 0; ; jkj  1:



ð17Þ

It is easy to check that the system (16) has solutions if and only if the system (17) does Moreover, if jðtÞ is a solution of (16) then cðtÞ ¼ cðtÞjðtÞ is a solution of (17) Conversely, if cðtÞ is a solution of (17) then

jðtÞ ¼bðtÞcðtÞ þ

bðtÞZðtÞ pi

Ð

G cðtÞ ZðtÞðttÞdtþ f2ðtÞ

1þ cðtÞaðtÞ þ cðtÞbðtÞ ð18Þ

is a solution of (16)

Hence, in order to solve the system (16), it is enough to solve the system (17) Rewrite (17) in the form

ðMfÞðtÞ ¼ ðKcf2ÞðtÞ;

~

vvkðfÞ ¼ 0; k¼ 0; ; jkj  1:



ð19Þ where fðtÞ ¼ cðtÞ=ZðtÞ, ~vv ðfÞ ¼ v ðK fÞ and M is defined by (11)

On Solvability of a Boundary Value Problem for Singular Integral Equations 243

Trang 10

By the same method as for the equation (12), every solution of this system can

be found in a closed form So every solution of the problem (5)–(6) is defined by the formula

jðtÞ ¼bðtÞZðtÞfðtÞ þ

bðtÞZðtÞ pi

Ð

G

fðtÞ ðttÞdtþ f2ðtÞ

1þ cðtÞaðtÞ þ cðtÞbðtÞ ; where fðtÞ is a solution of the system (19), i.e every solution of the problem (5)– (6) can be found in a closed form

References

1 Gakhov, F.D.: Boundary value problems, Oxford, 1966 (3rd Russian complemented and corrected edition, Moscow, 1977)

2 Mau, Ng.V.: Boundary value problems and controllability of linear system with right invertible operators, Warszawa, 1992

3 Mau, Ng.V.: Generalized algebraic elementsand linear singular integral equationswith transformed arguments, WPW, Warszawa, 1989

4 Przeworska-Rolewicz, D.: Algebraic Analysis, PWN and Reidel, Warszawa-Dordrecht, 1988

5 Przeworska-Rolewicz, D.: Equationswith transformed argument, An algebraic approach, Amsterdam-Warszawa, 1973

... f1tị: 8ị

By lemma 1, in order to solve the equation (8) it is enough to solve the equation

On Solvability of a Boundary Value Problem for Singular Integral Equations 239... problems and controllability of linear system with right invertible operators, Warszawa, 1992

3 Mau, Ng.V.: Generalized algebraic elementsand linear singular integral equationswith transformed... Integral Equations 243

Trang 10

By the same method as for the equation (12), every solution of this

Ngày đăng: 19/10/2022, 18:31

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Gakhov, F.D.: Boundary value problems, Oxford, 1966 (3rd Russian complemented and corrected edition, Moscow, 1977) Khác
2. Mau, Ng.V.: Boundary value problems and controllability of linear system with right invertible operators, Warszawa, 1992 Khác
3. Mau, Ng.V.: Generalized algebraic elementsand linear singular integral equationswith transformed arguments, WPW, Warszawa, 1989 Khác
4. Przeworska-Rolewicz, D.: Algebraic Analysis, PWN and Reidel, Warszawa-Dordrecht, 1988 Khác
5. Przeworska-Rolewicz, D.: Equationswith transformed argument, An algebraic approach, Amsterdam-Warszawa, 1973 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN