Southeast Asian Bulletin of Mathematics 2002 26: 235–244 Southeast AsianBulletin of Mathematics : Springer-Verlag 2002 On Solvability of a Boundary Value Problem for Singular Integral Eq
Trang 1Southeast Asian Bulletin of Mathematics (2002) 26: 235–244 Southeast Asian
Bulletin of Mathematics
: Springer-Verlag 2002
On Solvability of a Boundary Value Problem for
Singular Integral Equations
Nguyen Van Mau and Nguyen Tan Hoa
Hanoi University of Science, Vietnam, 334 Nguyen Trai, Dong Da, Hanoi, Vietnam
AMS Subject Classification: 47G05, 45GO5, 45E05
Abstract.This paper deals with the solvability of boundary value problems for singular in-tegral equations of the form (i)–(ii)
By an algebraic method we reduce the problem (i)–(ii) to a system of linear algebraic equations which gives all solutions in a closed form
Keywords: initial and co-initial operators, singular integral equations, boundary value problem
Introduction
The theory of general boundary value problem induced by right invertible oper-ators were investigated by Przeworska-Rolewicz and has been developed by many other mathematicians (c.f [2], [4]) In this paper, we give an application of this theory to solve the following boundary value problem:
½ðKnþ Kn1KcÞjðtÞ ¼ f ðtÞ; ðiÞ
ðFjKjjÞðtÞ ¼ jjðtÞ; j¼ 0; ; n 1; jjðtÞ A Ker K; if k> 0;
ðG0fÞðtÞ ¼ 0; ðGjRj1 .R0Þ f ðtÞ ¼ 0; j¼ 1; ; n 1 if k< 0; ðiiÞ where Kc is an operator of multiplication by the function cðtÞ; Fj; Gj ð j ¼ 0; ;
n 1Þ are initial and co-initial operators, respectively, and
ðKjÞðtÞ ¼ aðtÞjðtÞ þbðtÞ
pi ð
G
jðtÞ
t tdt; k¼ Ind K:
1 Preliminaries
We recall some notations and results which are used in the sequel (see [2], [4])
Trang 2Let G be a simple regular closed arc in complex plane and let X ¼ HmðGÞ ð0 < m < 1Þ Denote by Dþ the domain bounded by G (assume that 0 A Dþ) and
by D-its complement including the point at infinity The set of all linear operators with domains and ranges contained in X will be denoted by LðX Þ Write L0ðX Þ :¼
fA A LðX Þ : dom A ¼ X g
Let RðX Þ be the set of all right invertible operators belonging to LðX Þ For
D A RðX Þ, we denote by RDthe set of all its right inverses
An operator F A LðX Þ is said to be an initial operator for an operator D A RðX Þ corresponding to a right inverse R of D if
F2 ¼ F ; Fðdom DÞ ¼ Ker D; FR¼ 0:
Denote by FD the set of all initial operators for D A RðX Þ
The following fact is well-known:
F A LðX Þ is an initial operator for D A RðX Þ corresponding to R A RD if and only if F ¼ I RD on dom D
Let LðX Þ be the set of all left invertible operators belonging to L0ðX Þ For
V A LðX Þ, we denote by LV the set of all its left inverser
If V A LðX Þ and L A LV then the operator
G :¼ I VL
is called the co-initial operators for V corresponding to L A LV
Denote by GV the set of all co-initial operators for V A LðX Þ
Lemma 1 (see [2]) Let A; B A LðX Þ, Im A H dom B, Im B H dom A Then equa-tion ðI ABÞx ¼ y hassolutionsif and only if ðI BAÞu ¼ By doesand there is one-to-one correspondence between the two sets of solutions, given by
u¼ Bx $ x ¼ y þ Au:
2 The Results
Let
ðKjÞðtÞ :¼ aðtÞjðtÞ þbðtÞ
pi ð
G
jðtÞ
t tdt;
where aðtÞ; bðtÞ A X , a2ðtÞ b2ðtÞ ¼ 1, 0 0 k ¼ Ind K
Denote
ðR0jÞðtÞ :¼ aðtÞjðtÞ bðtÞZðtÞ
pi ð
G
jðtÞ ZðtÞðt tÞdt;
where
ZðtÞ ¼ eGðtÞtk=2; GðtÞ ¼2pi1
ð
G
ln tk aðtÞbðtÞ aðtÞþbðtÞ
t t dt:
Trang 3It is known that (see [2], [4])
i) If k> 0 then K is right invertible and
RK¼ fR ¼ R0þ ðI R0KÞT : T A L0ðX Þg:
Let F0; ; Fn1be given initial operators for K corresponding to R0; ; Rn1A
RK, where
Rj¼ R0þ ðI R0KÞTj ð j ¼ 1; ; n 1Þ; T1; ; Tn1 AL0ðX Þ: ð1Þ ii) If k< 0 then K is left inverbible and
LK¼ fR ¼ R0þ TðI KR0Þ : T A LðX Þ; dom T ¼ ðI KR0ÞX g:
In this case, let G0; ; Gn1be given co-initial operators for K corresponding to
R0; ; Rn1A LK, where
Rj¼ R0þ TjðI KR0Þ ð j ¼ 1; ; n 1Þ; T1; ; Tn1ALðX Þ: ð2Þ Lemma 2.If k> 0, then
ðF0jÞðtÞ ¼X
k1
k¼0
ukðjÞckðtÞ on X ;
where ckðtÞ ¼ bðtÞZðtÞtk ðk ¼ 0; ; k 1Þ and ukðjÞ ðk ¼ 0; ; k 1Þ are linear functionalswhich are defined by
ukðjÞ ¼ 1
2pi ð
G
tk1k
eGðtÞ jðtÞ 1
pi ð
G
jðt1Þ
t1 tdt1
where GðtÞ isa boundary value of the function GðzÞ in D
Proof.We have
ðF0jÞðtÞ ¼ ½ðI R0KÞjðtÞ
¼ jðtÞ a2ðtÞjðtÞ aðtÞbðtÞ
pi ð
G
jðtÞ
t tdt
þbðtÞZðtÞ pi ð
G
1 ZðtÞðt tÞ aðtÞjðtÞ þ
bðtÞ pi ð
G
jðt1Þ
t1 tdt1
dt
¼ jðtÞ a2ðtÞjðtÞ aðtÞbðtÞ
pi ð
G
jðtÞ
t tdt
þ bðtÞZðtÞ 1
pi ð
G
jþðtÞ dt
XþðtÞðt tÞ
1 pi ð
G
jðtÞ dt
XðtÞðt tÞ
;
On Solvability of a Boundary Value Problem for Singular Integral Equations 237
Trang 4where jþðtÞ ¼1
2½ðI þ SÞjðtÞ, jðtÞ ¼1
2½ðI þ SÞjðtÞ, XþðtÞ ¼ eG þ ðtÞ, XðtÞ ¼
tkeGðtÞ
(GþðtÞ; GðtÞ are boundary values of the function GðzÞ in Dþ; D, re-spectively)
On the other hand
1
pi
ð
G
jþðtÞ dt
XþðtÞðt tÞ
1 pi ð
G
jðtÞ dt
XðtÞðt tÞ
¼ j
þðtÞ
XþðtÞ
1 pi ð
G
jðtÞtkdt
eG ðtÞðt tÞ
¼ j
þðtÞ
XþðtÞ
tk
pi ð
G
jðtÞ dt
eGðtÞðt tÞ
Xk1
k¼0
tk
pi ð
G
tk1kjðtÞ
eGðtÞ dt
¼ j
þðtÞ
XþðtÞþ
jðtÞ
XðtÞ
Xk1
k¼0
tk
pi ð
G
tk1kjðtÞ
eG ðtÞ dt
¼bðtÞ
ZðtÞjðtÞ þ
aðtÞ ZðtÞpi ð
G
jðtÞ
t tdt
Xk1
k¼0
tk
pi ð
G
tk1kjðtÞ
eG ðtÞ dt:
Hence
ðF0jÞðtÞ ¼X
k1
k¼0
bðtÞZðtÞtk
2pi ð
G
tk1k
eGðtÞ jðtÞ 1
pi ð
G
jðt1Þ
t1 tdt1
dt:
By similar arguments, we obtain the following result:
Lemma 3.If k< 0, then
ðG0jÞðtÞ ¼ X
jkj1
k¼0
vkðjÞckðtÞ on X;
where ckðtÞ ¼ bðtÞtk ðk ¼ 0; ; jkj 1Þ and vkðjÞ ðk ¼ 0; jkj 1Þ are linear functionalsdefined by
vkðjÞ ¼ 1
2pi ð
G
tjkj1keGðtÞ jðtÞ
ZðtÞ
1 pi ð
G
jðt1Þ dt1
Zðt1Þðt1 tÞ
where GðtÞ isa boundary value of the function GðzÞ in D
In the sequel, for every function cðtÞ A X , we write
ðKjÞðtÞ ¼ cðtÞjðtÞ:
Trang 5Consider singular integral equation of the form
½ðKnþ Kn1KcÞjðtÞ ¼ f ðtÞ; ð5Þ with mixed boundary conditions
iÞ ðFjKjjÞðtÞ ¼ jjðtÞ; jjðtÞ A Ker K; j¼ 0; ; n 1 if k> 0;
iiÞ ðG0fÞðtÞ ¼ 0; ðGjR0 .Rj1fÞðtÞ ¼ 0; j¼ 1; ; n 1 if k< 0; ð6Þ where fðtÞ; cðtÞ A X ; Fj; Gjð j ¼ 0; ; n 1Þ are defined by (1) and (2), respec-tively, 1< n A N
Theorem 1.Suppose that1þ cðtÞaðtÞ G cðtÞbðtÞ 0 0 for all t A G Then every solu-tion of the problem(5)–(6) can be found in a closed form
Proof
Let k> 0, we have K A RðX Þ
Hence, the equation (5) is equivalent to the equation
jðtÞ ¼ ðR0 .Rn1Kn1KcjÞðtÞ þ ðR0 .Rn1fÞðtÞ þ ðR0 .Rn2zn1ÞðtÞ
þ þ ðR0z1ÞðtÞ þ z0ðtÞ;
where z0ðtÞ; ; zn1ðtÞ A Ker K are arbitrary
Thus, the problem (5)–(6) is equivalent to the equation
jðtÞ ¼ ðR0 .Rn1Kn1KcjÞðtÞ þ ðR0 .Rn1fÞðtÞ þ ðR0 .Rn2jn1ÞðtÞ
þ þ ðR0j1ÞðtÞ þ j0ðtÞ;
i.e
½ðI þ R0 .Rn1Kn1KcÞjðtÞ ¼ f1ðtÞ; ð7Þ where
f1ðtÞ ¼ ðR0 .Rn1fÞðtÞ þ ðR0 .Rn2jn1ÞðtÞ þ þ ðR0j1ÞðtÞ þ j0ðtÞ:
By the Taylor-Gontcharov formula for right invertible operators (see [4]), (7) is iquivalent to the equation
2
4
0
@Iþ R0 I F1X
n1
k¼2
R1 .Rk1FkKk1
!
Kc
1 Aj
3 5ðtÞ ¼ f1ðtÞ: ð8Þ
By lemma 1, in order to solve the equation (8) it is enough to solve the equation
On Solvability of a Boundary Value Problem for Singular Integral Equations 239
Trang 6Iþ KcR0 F1KcR0X
n1
k¼2
R1 .Rk1FkKk1KcR0
! c
ðtÞ ¼ gðtÞ;
where
gðtÞ ¼ I F1X
n1
k¼2
R1 .Rk1FkKk1
!
Kcf1
ðtÞ:
Rewrite this equation in the form
Iþ KcR0 F1KcR0X
n1
k¼2
R1 .Rk1FkKk1KcR0
!
KZf
ðtÞ ¼ gðtÞ; ð9Þ
where fðtÞ ¼ cðtÞ=ZðtÞ
From lemma 2, we have
ðFkKk1KcR0KZfÞðtÞ ¼X
k1
j¼0
ujkðfÞcjðtÞ; k¼ 1; ; n 1;
where ujkðfÞ ¼ uj½ðI TkKÞKk1KcR0KZf; ujðjÞ; cjðtÞ ð j ¼ 0; ; k 1Þ are defined by (3)
Hence, (9) is of the form
ðMfÞðtÞ X
n1
k¼1
Xk1
j¼0
ujkðfÞcjkðtÞ ¼ gðtÞ; ð10Þ
where cj1ðtÞ :¼ cjðtÞ, cjkðtÞ ¼ ðR1 .Rk1cjÞðtÞ ðk ¼ 2; ; n 1Þ, j ¼ 0; ;
k 1 and
ðMfÞðtÞ :¼ ½1 þ cðtÞaðtÞZðtÞfðtÞ cðtÞbðtÞZðtÞ
pi ð
G
fðtÞ
t tdt: ð11Þ Write this equation in the form
ðMfÞðtÞ X
q
k¼1
~
ukðfÞ ~ckðtÞ ¼ gðtÞ; ð12Þ
where q¼ kðn 1Þ, f~u1ðfÞ; ; ~uqðfÞg is a permutation of fujkðfÞ; j ¼ 0; k 1;
k¼ 1; ; n 1g and f ~c1ðtÞ; ; ~cqðtÞg is obtained by this permutation from the set of functionsfc ðtÞ; j ¼ 0; ; k 1; k ¼ 1; ; n 1g
Trang 7ðNfÞðtÞ :¼½1 þ aðtÞcðtÞfðtÞ þ
cðtÞbðtÞZ 1 ðtÞ pi
Ð
G fðtÞ
Z 1 ðtÞðttÞdt
1 þ aðtÞcðtÞ2 c2ðtÞb2ðtÞZðtÞ ; where
Z1ðtÞ ¼ ZðtÞeG1 ðtÞtk1 =21 þ aðtÞcðtÞ2 b2ðtÞc2ðtÞ1=2
;
G1ðtÞ ¼ 1
2pi ð
G
lntk 1GðtÞ
t t dt;
GðtÞ ¼1þ aðtÞcðtÞ þ bðtÞcðtÞ
1þ aðtÞcðtÞ bðtÞcðtÞ; k1¼ Ind GðtÞ:
If k1¼ 0, then M is invertible and M1¼ N Hence, the equation (12) is equivalent to the equation
fðtÞ X
q
k¼1
~
ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ: ð13Þ
Without loss of generality, we can assume that fðN ~ckÞðtÞgk¼1; q is a linearly independent system Then every solution of (13) can be found in a closed form by means of the system of linear algebraic equations
~
ujðfÞ X
q
k¼1
ajku~kðfÞ ¼ ~ukðNgÞ; j¼ 0; ; q;
where ajk¼ ~ujðN ~ckÞ; k; j ¼ 1; ; q
If k1> 0, then M is right invertible and N is a right inverse of M Hence, the equation (12) is equivalent to the equation
fðtÞ X
q
k¼1
~
ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ þ yðtÞ;
where yðtÞ A Ker M is arbitrary
We now can solve this equation by the same method as for the equation (13), i.e every its solution can be found in a closed form
If k1< 0, then M is left invertible and N is a left inverse of M Hence, the equation (12) is equivalent to the system
fðtÞ X
q
k¼1
~
ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ;
ð
G
gðtÞ þP
q k¼1
~
ukðfÞ ~ckðtÞ
Z1ðtÞ t
n1dt¼ 0; n¼ 1; ; jk1j;
8
>
>
<
>
>
:
On Solvability of a Boundary Value Problem for Singular Integral Equations 241
Trang 8fðtÞ X
q
k¼1
~
ukðfÞðN ~ckÞðtÞ ¼ ðNgÞðtÞ;
Xq
k¼1
bnku~kðfÞ ¼ fn; n¼ 1; ; jk1j;
8
>
>
>
>
ð14Þ
where
fn¼ ð
G
gðtÞtn1dt
Z1ðtÞ ; bnk¼
ð
G
~
ckðtÞtn1
Z1ðtÞ dt:
Without loss of generality, we can assume that fðN ~ckÞðtÞgk¼1; q is a linearly independent system Every solution of (14) can be found in a closed form by means of the system of linear algebraic equations
~
ujðfÞ X
q
k¼1
ajku~kðfÞ ¼ ~ujðNgÞ; j¼ 1; ; q;
X
q
k¼1
bnku~kðfÞ ¼ fn; n¼ 1; ; jk1j;
8
>
>
>
>
where akj¼ ~ukðN ~cjÞ, k; j ¼ 1; ; q
Thus, every solution of the equation (12) can be found in a closed form Due to the result of Lemma 1, every solution of the problem (5)–(6) is defined
by the formula
jðtÞ ¼ ðR0KZfÞðtÞ þ f1ðtÞ;
where fðtÞ is a solution of the equation (12), i.e every solution of the problem (5)– (6) can be found in a closed form
Let k< 0, we have K A LðX Þ
The Taylor-Gontcharov formula for left invertible operators (see [4]) and (6) together imply
½ðI KnRn1 .R0Þ f ðtÞ ¼ ðG0fÞðtÞ þ X
n1
k¼1
KkGkRk1 .R0
! f
ðtÞ ¼ 0; i.e
fðtÞ ¼ ½ðKnRn1 .R0Þ f ðtÞ:
Hence, the problem (5)–(6) is equivalent to the equation
½ðKnþ Kn1KÞjðtÞ ¼ ðKnRn1 .R fÞðtÞ;
Trang 9½ðK þ KcÞjðtÞ ¼ ðKRn1 .R0fÞðtÞ: ð15Þ
If jðtÞ is a solution of (15) then
ðG0KcjÞðtÞ ¼ ðG0KRn1 .R0fÞðtÞ ðG0KjÞðtÞ ¼ 0;
Thus, (15) is equivalent to the system
½ðI þ R0KcÞjðtÞ ¼ f2ðtÞ;
ðG0KcjÞðtÞ ¼ 0;
ð16Þ
where f2ðtÞ ¼ ðRn1 .R0fÞðtÞ
From Lemma 3,ðG0KcjÞðtÞ ¼ 0 if and only if
vkðKcjÞ ¼ 0; k¼ 0; ; jkj 1;
where vkðjÞ ðk ¼ 0; ; jkj 1Þ are defined by (4)
Hence, the system (16) is equivalent to the system
½ðI þ R0KcÞjðtÞ ¼ f2ðtÞ;
vkðKcjÞ ¼ 0; k¼ 0; ; jkj 1:
Consider the system of equations
½ðI þ KcR0ÞcðtÞ ¼ ðKcf2ÞðtÞ;
vkðcÞ ¼ 0; k¼ 0; ; jkj 1:
ð17Þ
It is easy to check that the system (16) has solutions if and only if the system (17) does Moreover, if jðtÞ is a solution of (16) then cðtÞ ¼ cðtÞjðtÞ is a solution of (17) Conversely, if cðtÞ is a solution of (17) then
jðtÞ ¼bðtÞcðtÞ þ
bðtÞZðtÞ pi
Ð
G cðtÞ ZðtÞðttÞdtþ f2ðtÞ
1þ cðtÞaðtÞ þ cðtÞbðtÞ ð18Þ
is a solution of (16)
Hence, in order to solve the system (16), it is enough to solve the system (17) Rewrite (17) in the form
ðMfÞðtÞ ¼ ðKcf2ÞðtÞ;
~
vvkðfÞ ¼ 0; k¼ 0; ; jkj 1:
ð19Þ where fðtÞ ¼ cðtÞ=ZðtÞ, ~vv ðfÞ ¼ v ðK fÞ and M is defined by (11)
On Solvability of a Boundary Value Problem for Singular Integral Equations 243
Trang 10By the same method as for the equation (12), every solution of this system can
be found in a closed form So every solution of the problem (5)–(6) is defined by the formula
jðtÞ ¼bðtÞZðtÞfðtÞ þ
bðtÞZðtÞ pi
Ð
G
fðtÞ ðttÞdtþ f2ðtÞ
1þ cðtÞaðtÞ þ cðtÞbðtÞ ; where fðtÞ is a solution of the system (19), i.e every solution of the problem (5)– (6) can be found in a closed form
References
1 Gakhov, F.D.: Boundary value problems, Oxford, 1966 (3rd Russian complemented and corrected edition, Moscow, 1977)
2 Mau, Ng.V.: Boundary value problems and controllability of linear system with right invertible operators, Warszawa, 1992
3 Mau, Ng.V.: Generalized algebraic elementsand linear singular integral equationswith transformed arguments, WPW, Warszawa, 1989
4 Przeworska-Rolewicz, D.: Algebraic Analysis, PWN and Reidel, Warszawa-Dordrecht, 1988
5 Przeworska-Rolewicz, D.: Equationswith transformed argument, An algebraic approach, Amsterdam-Warszawa, 1973
... f1tị: 8ịBy lemma 1, in order to solve the equation (8) it is enough to solve the equation
On Solvability of a Boundary Value Problem for Singular Integral Equations 239... problems and controllability of linear system with right invertible operators, Warszawa, 1992
3 Mau, Ng.V.: Generalized algebraic elementsand linear singular integral equationswith transformed... Integral Equations 243
Trang 10By the same method as for the equation (12), every solution of this